特點:靈敏度更高g/ml,應用不如UV廣泛。 應用: ①直接熒光光度法 ②作為HPLC的檢測器(用的多) 根據物質分子吸收光譜和熒光光譜能級躍遷機理,具有吸收光子能力的物質在特定波長光(如紫外光)照射下可在瞬間發射出比激發光波長長的光,即熒光。 分子受特定光照射后處于激發態的分子返回基態時發出熒光, 其熒光強度與呈線性關系, 從而可測出氣體濃度。當檢測儀器系統確定后,熒光總光強I與濃度的之間的關系可表示為: I=KC 在穩定的條件下,這些參數也隨之確定,k可視為常數。因此,式中I=kC表示的紫外熒光光強I與樣氣的濃度C成線性關系。這是紫外熒光法進行定量檢測的重要依據。......閱讀全文
特點:靈敏度更高g/ml,應用不如UV廣泛。 應用: ①直接熒光光度法 ②作為HPLC的檢測器(用的多) 根據物質分子吸收光譜和熒光光譜能級躍遷機理,具有吸收光子能力的物質在特定波長光(如紫外光)照射下可在瞬間發射出比激發光波長長的光,即熒光。 分子受特定光照射后處于激發態的分子返回基
X射線熒光分析是確定物質中微量元素的種類和含量的一種方法。 X射線熒光分析又稱X射線次級發射光譜分析。本法系利用原級X射線光子或其它微觀粒子激發待測物質中的原子,使之產生次級的特征X射線(X光熒光)而進行物質成分分析和化學態研究的方法。1948年由H.費里德曼(H.Friedmann)和L.S
在紫外-可見-近紅外區有特征熒光,并且其熒光性質(激發和發射波長、強度、壽命、偏振等)可隨所處環境的性質,如極性、折射率、粘度等改變而靈敏地改變的一類熒光性分子。 與核酸(DNA或RNA)、蛋白質或其他大分子結構非共價相互作用而使一種或幾種熒光性質發生改變的小分子物質。可用于研究大分子物質的性
三維熒光分析。普通熒光分析所得的光譜是二維譜圖,而描述熒光強度同時隨激發和發射波長變化的關系譜圖,就是三維熒光光譜。它可以提供比常規熒光光譜和同步熒光光譜更為完整的光譜信息,是很有價值的光譜指紋技術。三維熒光光譜可以作為光譜指紋技術在環境監測(溶解有機質的分布等)、臨床化學(根據癌細胞熒光代謝產
熒光抗體技術,用熒光物標記抗體來檢測細胞或組織中相應抗原或抗體的技術。熒光物種類一般有異硫氰酸熒光素、羅丹明熒光素、二氯三嗪基氨基熒光素等。一般是將待測標本固定于玻片表面,滴加已知熒光抗體后再以緩沖液沖洗,干燥后于熒光顯微鏡下觀察陽性是可見帶熒光的抗原抗體復合物; 陰性無熒光(因為帶熒光的抗體不
1. 計算機由用戶選配 2. 與計算機的接口:USB 標準接口或RS232 標準接口 3. 軟件:自主開發軟件,中文界面,適合國內科研單位、食品企業、醫院使用。 1) 自動化:可以自動進行樣品測量和數據處理。 2) 曲線擬合方式:對采集到的散點數據進行擬合。 3)
熒光抗體技術在臨床檢驗上已用作細菌、病毒和寄生蟲的檢驗及自身免疫病的診斷等。在細菌學檢驗中主要用于菌種的鑒定。標本材料可以是培養物、感染組織、病人分泌排泄物等。熒光間接染色法測定血清中的抗體,可用于流行病學調查和臨床回顧診斷。免疫熒光用于梅毒螺旋體抗體的檢測是梅毒特異性診斷常用方法之一。免疫熒光
熒光光譜儀又稱熒光分光光度計,是一種檢測物質的定性、定量分析儀器。 其原理是根據熒光效應:激光照射原子,原子中電子吸收能量躍遷到第一激發單線態或第二激發單線態, 但這些激發態是不穩定的,當電子由第一激發單線態恢復到基態時,能量會以光的形式釋放 ,產生熒光,一般持續發光時間短于10^-8秒(同時產
從電子躍遷的角度來講,熒光是指某些物質吸收了與它本身特征頻率相同的光線以后,原子中的某些電子從基態中的最低振動能級躍遷到較高的某些振動能級。電子在同類分子或其他分子中撞擊,消耗了相當的能量,從而下降到第一電子激發態中的最低振動能級,能量的這種轉移形式稱為無輻射躍遷。由最低振動能級下降到基態中的
熒光分析是一種先進的分析方法,它比電子探針法、質譜法、光譜法、極譜法等都應用的較廣泛和普及,這同熒光分析具有很多優點分不開的。熒光分析所用的設備較簡單,如目測熒光儀和熒光光度計構造非常簡單完全可以自己制造。比起質譜儀、極譜儀和電子探針儀來它在造價上要便宜很多倍,而且熒光分析的最大特點是:分析靈敏