我國在大直徑半導體碳納米管手性結構實現宏量分離
從概念上講,碳納米管是由石墨烯卷曲形成的一維管狀分子,它不僅具有石墨烯優異的力學、熱學性能以及極高的載流子遷移率等特點,而且具有結構可調的能隙結構,表現出優異的電子以及光電子特性,是制備高速、低功耗、高集成度電子和光電子集成回路的理想材料。相對于傳統的Si基半導體器件,碳納米管電子器件的能效能夠提高一個數量級以上,而且能夠有效克服Si基半導體材料的短溝道效應,有望突破硅基CMOS 技術的理論和技術極限。最近,北京大學和Standford大學研究小組分別利用碳納米管制備出二維和三維集成回路,其性能均已接近Si基集成回路,隨著技術的優化,有望在未來制造出比硅基芯片更小、更快、更節能的全碳芯片。這些突破性成果凸顯了未來碳納米管半導體產業的巨大應用前景。 碳納米管特殊的性質來源于其結構,結構上原子排列的微小差異將導致性質的巨大不同。常用的生長方法合成出的碳納米管通常是以各種結構的混合物形式存在。由于結構的多樣性,制備的器件性能具有......閱讀全文
我國在大直徑半導體碳納米管手性結構實現宏量分離
從概念上講,碳納米管是由石墨烯卷曲形成的一維管狀分子,它不僅具有石墨烯優異的力學、熱學性能以及極高的載流子遷移率等特點,而且具有結構可調的能隙結構,表現出優異的電子以及光電子特性,是制備高速、低功耗、高集成度電子和光電子集成回路的理想材料。相對于傳統的Si基半導體器件,碳納米管電子器件的能效能夠
物理所碳納米管結構分離研究獲進展
從概念上講,碳納米管是由石墨烯卷曲形成的一維管狀分子,具有石墨烯優異的力學、熱學性能以及極高的載流子遷移率等特點,并表現出結構可調的電子、光電子特性,在構建下一代高速低功耗、高集成度電子和光電子集成回路方面具有重要的應用前景。然而,碳納米管性質是由其結構決定的。原子排列上的微小差異將導致其性質的
物理所碳納米管結構分離研究獲進展
從概念上講,碳納米管是由石墨烯卷曲形成的一維管狀分子,具有石墨烯優異的力學、熱學性能以及極高的載流子遷移率等特點,并表現出結構可調的電子、光電子特性,在構建下一代高速低功耗、高集成度電子和光電子集成回路方面具有重要的應用前景。然而,碳納米管性質是由其結構決定的。原子排列上的微小差異將導致其性質的
碳納米管薄膜電學輸運性能與其手性結構的依存關系
建立碳納米管電學輸運性能與其手性結構的依存關系,對于設計和構建高性能碳基器件具有重要意義。十多年前,科研人員嘗試基于單根碳納米管構建晶體管,探測其電學輸運性能與結構的關系。由于單根碳納米管電學信號弱,手性結構表征困難,揭示其性能與手性結構的關系頗具挑戰性。多種類單一手性碳納米管的宏量制備是解決這
蘇州納米所單手性碳納米管高純度分離技術研究獲進展
單手性碳納米管是一種頗具前途的電子和光電子材料,具有確定的能帶結構和近紅外吸收發射特性,在碳基集成電路、紅外光探測器與量子光源等方面有廣泛的應用前景,有望成為下一代碳基電子的核心材料。已有較多方法(如梯度密度離心法、凝膠色譜法、雙水相法)可分離得到多種單手性碳管,但這些單手性碳管的直徑基本在1.
物理所單一手性碳納米管旋光異構體分離與物性研究獲進展
碳納米管因其一維的管狀分子結構,表現出優異的力學、電學和光學等性質,在微納光電子器件、生物醫藥、新能源材料等方面具有廣闊的應用前景。碳納米管特殊的性質來源于其結構。原子結構排列上的微小差異將導致碳納米管光電性質的巨大區別。如:碳納米管由于結構的不同可以是金屬性的,也可以是半導體性的;每一種手性碳
新方法合成90%純度碳納米管水平陣列
多年來,找到一種可靠方法制備相同結構碳納米管的水平陣列,是困擾科學家們的一大難題。最近,北京大學化學與分子工程學院和納米化學研究中心的張錦教授,帶領課題組開發出一種全新方法,合成出純度高達90%的相同結構碳納米管水平陣列。2月15日出版的《自然》雜志在線刊登了這一重要成果。 碳納米管(CNTs
手性的結構特點
手性廣泛的存在于自然界中,在多種學科中表示一種重要的對稱特點。如果某物體與其鏡像不同,則其被稱為“手性的”,且其鏡像是不能與原物體重合的,就如同左手和右手互為鏡像而無法疊合。手性物體與其鏡像被稱為對映體(enantiomorph,希臘語意為“相對/相反形式”);在有關分子概念的引用中也被稱為對映異構
我科學家攻克單壁碳納米管結構可控制備關鍵技術
由于各國科學家一直未能找到讓碳納米管結構可控生長的制備方法,碳基電子學發展和電子技術的實際應用受到了極大制約。26日從北京大學傳來喜訊,該校李彥教授課題組借助一種自主研制的新型鎢基合金催化劑,研究出單壁碳納米管結構可控制備方法。學術成果在6月26日的《自然》雜志上發表。
大連化物所研究發現碳納米管內手性催化加速現象
日前,中科院大連化學物理研究所李燦院士領導的研究團隊將手性修飾的Pt納米催化劑粒子裝入碳納米管內,發現碳納米管顯著加速手性催化的現象。 手性催化(也稱不對稱催化)是當今化學領域的前沿研究方向,是合成手性藥物中間體的重要技術。近年來,手性藥物工業的迅速發展使手性化合物的合成更加受