對于利用rRNA的熒光原位雜交來說,如下原因可導致較低的熒光信號強度: 較低的細胞核糖體含量 較低的細胞周邊的通透性 較低的目標序列可接觸性(由于rRNA的折疊產生的構象,有些位置與rRNA分子內其他鏈或其他rRNA或蛋白緊密接觸,從而使探針無法和目標序列雜交) 為檢驗細胞中的目標序列是否容易被探針雜交,及測試最佳雜交溫度,可利用“克隆熒光原位雜交”(clone-FISH)進行試驗:將rRNA基因結合入質粒,轉化至大腸桿菌中表達,構成核糖體,再用熒光標記的探針雜交。 FISH可與流式細胞術聯用,對特定熒光標記的細胞進行計數或者分離。......閱讀全文
對于利用rRNA的熒光原位雜交來說,如下原因可導致較低的熒光信號強度: 較低的細胞核糖體含量 較低的細胞周邊的通透性 較低的目標序列可接觸性(由于rRNA的折疊產生的構象,有些位置與rRNA分子內其他鏈或其他rRNA或蛋白緊密接觸,從而使探針無法和目標序列雜交) 為檢驗細胞中的目標序列是
熒光原位雜交可應用于:(1)動植物基因組結構研究;(2)染色體精細結構變異分析;(3)病毒感染分析;(4)腫瘤遺傳學和基因組進化研究。實驗方法原理用已知的標記單鏈核酸為探針,按照堿基互補的原則,與待檢材料中未知的單鏈核酸進行異性結合,形成可被檢測的雜交雙鏈核酸。由于DNA分子在染色體上是沿著染色體縱
熒光原位雜交方法是一種物理圖譜繪制方法,使用熒光素標記探針,以檢測探針和分裂中期的染色體或分裂間期的染色質的雜交。熒光原位雜交技術是一種重要的非放射性原位雜交技術。 它的基本原理是:如果被檢測的染色體或DNA纖維切片上的靶DNA與所用的核酸探針是同源互補的,二者經變性-退火-復性,即可形成靶D
一、原位雜交( In Situ Hybridization,ISH) 是用標記的核酸探針,使用非放射檢測系統或放射自顯影系統,在組織切片、細胞涂片及染色體制片上等對核酸進行定性、定位和相對定量研究的一種分子生物學方法,具有靈敏、特異、直觀等優點。已逐漸成為分子生物學和分子病理學
一、原位雜交( In Situ Hybridization,ISH) 是用標記的核酸探針,使用非放射檢測系統或放射自顯影系統,在組織切片、細胞涂片及染色體制片上等對核酸進行定性、定位和相對定量研究的一種分子生物學方法,具有靈敏、特異、直觀等優點。已逐漸成為分子生物學和分子病理學
一、原位雜交( In Situ Hybridization,ISH) 是用標記的核酸探針,使用非放射檢測系統或放射自顯影系統,在組織切片、細胞涂片及染色體制片上等對核酸進行定性、定位和相對定量研究的一種分子生物學方法,具有靈敏、特異、直觀等優點。已逐漸成為分子生物學和分子病理學的常見技術之一,廣泛應
1974年Evans首次將染色體顯帶技術和染色體原位雜交聯合應用,提高了定位的準確性。20世紀70年代后期人們開始探討熒光標記的原位雜交,即FISH技術。1981年Harper成功地將單拷貝的DNA序列定位到G顯帶標本上,標志著染色體定位技術取得了重要進展。20世紀90年代,隨著人類基因組計劃的
該技術不但可用于已知基因或序列的染色體定位,而且也可用于未克隆基因或遺傳標記及染色體畸變的研究。在基因定性、定量、整合、表達等方面的研究中頗具優勢。 FISH最初用于中期染色體。從正在分化的細胞核中制備的這種染色體是高度凝縮的,每條染色體都具有可識別的形態,它們染色后將顯現出特征性的著絲粒位置
熒光標記技術(FISH)指利用一些能發射熒光的物質共價結合或物理吸附在所要研究分子的某個基團上,利用它的熒光特性來提供被研究對象的信息。 上述試題的技術是在原熒光標記技術基礎上發展起來的熒光原位雜交技術。 1969年,Gall和Pardue等首次將同位素探針用于原位雜交實驗,獲得成功。 1
原位雜交的探針按標記分子類型分為放射性標記和非放射性標記。用同位素標記的放射性探針優勢在于對制備樣品的要求不高,可以通過延長曝光時間加強信號強度,故較靈敏。缺點是探針不穩定、自顯影時間長、放射線的散射使得空間分辨率不高、及同位素操作較繁瑣等。采用熒光標記系統則可克服這些不足,這就是FISH技術。