<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    一文讀懂28GHz5G通信頻段射頻前端模塊(一)

    隨著 5G 毫米波預期即將進入商用,行業內關鍵公司的研發正在順利推進,已經完成定制組件指標劃定、設計和驗證。實現未來毫米波 5G 系統所需的基本組件是射頻前端模塊(FEM)。該模塊包括發射機的最終放大級以及接收機中最前端的放大級以及發射 / 接收開關(Tx/Rx)以支持時分雙工(TDD)。FEM 必須在發射模式下具備高線性度,并在接收模式下具備低噪聲系數。由于毫米波 5G 系統可能需要用戶終端采用多個 FEM 構成相控陣架構或開關天線波束架構。因此 FEM 必須采用高效、緊湊和低成本的方式實現,且最好能簡單控制和監測。 本文介紹了符合以上所有要求的 28GHz 5G 通信頻段(27.5 至 28.35GHz)射頻前端模塊 MMIC(單片微波集成電路)的設計、實現和驗證。該射頻前端由 Plextek RFI 公司開發,采用 WINSemiconductors(穩懋半導體)的 ......閱讀全文

    高速高頻電路電磁場仿真:FDTD和FEM算法各有什么優缺點

    以下是兩位網友的回答,稍微有所調整:RanHe的回答:在討論電磁仿真前,先要敬仰前輩。計算電磁學從大的方向可以分為兩大類:全波仿真算法,高頻算法。全波仿真是一種精確算法,但是非常消耗計算資源。一種簡單的估算方法是:通常我們對物體要進行剖分,剖分至少要達到0.1個波長。那么也就是說,如果這個物體的電尺

    一文讀懂28GHz 5G通信頻段射頻前端模塊 (一)

    隨著 5G 毫米波預期即將進入商用,行業內關鍵公司的研發正在順利推進,已經完成定制組件指標劃定、設計和驗證。實現未來毫米波 5G 系統所需的基本組件是射頻前端模塊(FEM)。該模塊包括發射機的最終放大級以及接收機中最前端的放大級以及發射 / 接收開關(Tx/Rx)以支持時分雙工(T

    計算電磁學各種方法比較和電磁仿真軟件(一)

    計算電磁學中有眾多不同的算法,如時域有限差分法(FDTD)、時域有限積分法(FITD)、有限元法(FE)、矩量法(MoM)、邊界元法(BEM)、 譜域法(SM)、傳輸線法(TLM)、模式匹配法(MM)、橫向諧振法(TRM)、線方法(ML)和解析法等等。在頻域,數值算法有:有限元法(FEM - F

    一文讀懂28GHz 5G通信頻段射頻前端模塊 (三)

    盡管 5G 通信系統需要線性放大來保持調制保真度,但為了提供一個便于比較的性能指標,還是有必要測量輸出 P1dB 和 PAE。測量所得性能如圖 8 所示,可見 P1dB 在 20.2dBm 左右,并在飽和時上升到 21dBm。FEM 的發射通道 PAE 約為 20%,僅在該頻帶的高

    GaN:實現 5G 的關鍵技術

    日前,由 EETOP 聯合 KEYSIGHT 共同舉辦的“2020 中國半導體芯動力高峰論壇”隆重舉行。Qorvo 無線基礎設施部門高級應用工程師周鵬飛也受邀參與了這次盛會,并發表了題為《實現 5G 的關鍵技術—— GaN》的演講。 首先,周鵬飛給我們介紹了無線基礎設施的發展。他表示

    HFSS算法及應用場景介紹(二)

    IE算法是三維矩量法積分方程技術,支持三角形網格剖分。IE算法不需要像FEM算法一樣定義輻射邊界條件,在HFSS中主要用于高效求解電大尺寸、開放結構問題。與HFSS FEM算法一樣,支持自適應網格技術,也可以高精度、高效率解決客戶問題,同時支持將FEM的場源鏈接到IE中進行求解。HFSS-I

    高效的輻射與散射仿真實現方案

    有限元法(FEM)作為一種分析和設計工具,已廣泛應用于天線、微波和信號完整性等眾多電子工程領域。FEM求解器與其它矩量法(MoM)和時域有限差分法(FDTD)等數值方法相比擁有多項顯著的優勢。這些優勢包括:能夠處理復雜的非均勻和各向異性材料、能夠借助四面體單元準確地描繪復雜幾何形狀、能夠使用高階基函

    HFSS算法及應用場景介紹(三)

    混合算法(FEBI,IE-Region,PO-Region,SBR+ Region)前面對頻率內的各種算法做了介紹并說明了各種算法應用的場景,很多時候碰到的工程問題既包括復雜結構物理也包括超大尺寸物理,如新能源汽車上的天線布局問題,對仿真而言,最好的精度是用全波算法求解,最快的速度是采用近似算求解,

    電磁場求解器基本概念及主流PCB仿真EDA軟件解析(一)

      商業化的射頻EDA軟件于上世紀90年代大量的涌現,EDA是計算電磁學和數學分析研究成果計算機化的產物,其集計算電磁學、數學分析、虛擬實驗方法為一體,通過仿真的方法可以預期實驗的結果,得到直接直觀的數據。如何選擇PCB電磁場仿真軟件的問題。那么,在眾多電磁場EDA軟件中,我們如何“透過現象

    HFSS算法及應用場景介紹(一)

    前言相信每一位使用過HFSS的工程師都有一個疑問或者曾經有一個疑問:我怎么才能使用HFSS計算的又快又準?對使用者而言,每個工程師遇到的工程問題不一樣,工程經驗不能夠直接復制;對軟件而言,隨著HFSS版本的更新,HFSS算法越來越多,針對不同的應用場景對應不同的算法。因此,只有實際工程問題切合合適的

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频