活體動物光學成像技術在中醫藥研究中的應用展望(二)
二、 技術應用通過活體動物體內成像系統,可以觀測到癌癥的發展進程以及中藥(單體或復方)治療所產生的反應,并可用于構建轉基因動物疾病模型,觀測治療炎癥等的中藥治療效果。具體應用如下:1.中草藥抗腫瘤療效觀察應用活體動物體內光學成像技術可以直接快速地測量各種癌癥模型中腫瘤的生長和轉移,并可對癌癥治療中癌細胞的變化進行實時觀測和評估。活體生物發光成像能夠無創傷地定量檢測小鼠整體的原位瘤、轉移瘤及自發瘤。生物發光成像技術提高了檢測的靈敏度,即使微小的轉移灶也能被檢測到(可以檢測到體內102個細胞的微轉移)。為研究目的基因是在何時、何種刺激下表達,將熒光素酶基因插入目的基因啟動子的下游,并穩定整合于實驗動物染色體中,形成轉基因動物模型。利用其表達產生的熒光素酶與底物作用產生生物發光,反應目的基因的表達情況,從而實現對目的基因的研究。可用于觀察中藥誘導特定基因表達或關閉。研究者根據研究目的,將靶基因、靶細胞、病毒及細菌進行熒光素酶標記,同時......閱讀全文
活體動物光學成像技術在中醫藥研究中的應用展望(二)
二、 技術應用通過活體動物體內成像系統,可以觀測到癌癥的發展進程以及中藥(單體或復方)治療所產生的反應,并可用于構建轉基因動物疾病模型,觀測治療炎癥等的中藥治療效果。具體應用如下:1.中草藥抗腫瘤療效觀察應用活體動物體內光學成像技術可以直接快速地測量各種癌癥模型中腫瘤的生長和轉移,并可對癌癥治療中癌
活體動物光學成像技術在中醫藥研究中的應用展望(一)
活體動物體內光學成像(Optical in vivo Imaging)主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及d
動物活體光學成像的應用進展
隨著對亞細胞結構和功能、分子生理和病理、細胞間和細胞內信號通路研究的深入,人類對疾病和對生命本質的認識不斷被追朔到蛋白質、基因水平。在上個世紀發展起來的CT、MRI、PFT、超聲等宏觀影像技術已經遠不能滿足對活體環境內細微生命過程的探詢。組織切片和免疫染色能夠部分解釋一些生物現象,但是需要研究對象與
活體成像技術在腦缺血研究中的應用
腦血管疾病已經成為全世界危害人類健康的一種重要疾病。利用動物腦缺血及缺血再灌注模型來模擬人類腦血管疾病并對之進行研究,是當前神經科學的常用研究手段。腦缺血發生后,會伴隨著新生血管的形成,如何檢測新生血管的血流,以及腦缺血程度的評估也是當下研究的熱點。傳統用于人類缺血性損傷的診斷,如磁共振成像(MRI
活體光學成像技術之光學活體成像前動物脫毛的必要性
在上幾期的文章中,我們分別介紹了熒光成像與生物發光成像的比較、熒光蛋白、熒光染料的挑選方法。當大家選擇了合適的標記方法并建立成像模型(藥物注射、腫瘤注射等)后,需要對實驗動物進行活體成像觀察。在成像前,對實驗動物進行完全脫毛是非常重要的步驟,直接關系能否獲得高質量的成像數據。今天將為大家詳細介紹成像
活體動物體內光學成像(二)
3. 實驗過程 通過分子生物學克隆技術, 應用單克隆細胞技術的篩選,將熒光素酶的基因穩定整合到預期觀察的細胞的染色體內,培養出能穩定表達熒光素酶蛋白的細胞株。典型的成像過程是:小鼠經過麻醉系統被麻醉后放入成像暗箱平臺,軟件控制平臺的升降到一個合適的視野,自動開啟照明燈拍攝第一次背景圖。下一步,自動關
活體成像技術在血液系統中的應用
光學活體成像技術主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。可見光體內成像通過對同一組實驗對象在不
活體生物光學成像技術的應用
作為一項新興的分子、基因表達的分析檢測技術,在體生物光學成像已成功應用于生命科學、生物醫學、分子生物學和藥物研發等領域,取得了大量研究成果,主要包括: 在體監測腫瘤的生長和轉移、基因治療中的基因表達、機體的生理病理改變過程以及進行藥物的篩選和評價等。 1、在體監測腫瘤的生長和轉移
活體動物分子成像技術的組合運用在新藥研究中的應用
??? 目前興起的分子成像技術在新藥研究領域引起了很多科研工作者的興趣,在新藥研究的各個環節,分子成像技術越來越顯示了其優越性和必不可少性,發揮越來越重要的作用。分子成像技術包括活體動物可見光成像技術、小動物PET(SPECT)技術以及小動物CT技術等。活體動物可見光成像技術由于儀器操作簡單、價格相
小動物活體成像技術概覽(二)
光在哺乳動物組織內傳播時會被散射和吸收,光子遇到細胞膜和細胞質時會發生折射現象,而且不同類型的細胞和組織吸收光子的特性并不一樣。在偏紅光區域, 大量的光可以穿過組織和皮膚而被檢測到。利用靈敏的活體成像系統最少可以看到皮下的500個細胞,當然,由于發光源在老鼠體內深度的不同可看到的最少細胞數是不同
液閃測量技術在中醫藥研究中的應用及前景展望
液閃測量拄木是一種利用液體閃爍計數囂進行體外放射性測量的技木.最有利于探測離體樣品中3H、14C等發射的穿透力租弱的軟β射線。具有靈敏度高、特異性強等優點。這一技木的應用使中醫藥的研究更加深^,并已成為溝通傳統醫學與現代醫學的渠道,為中酉醫結合的研究作出了很大的貢獻。迄今,該技木已應用于中醫藥研究的
小動物活體成像技術的應用領域
癌癥與抗癌藥物研究 ,免疫學與干細胞研究 ,細胞凋零 ,病理機制及病毒研究 ,基因表達和蛋白質之間相互作用 ,轉基因動物模型構建 ,藥效評估 ,藥物甄選與預臨床檢驗 ,藥物配方與劑量管理 ,腫瘤學應用 ,生物光子學檢測 ,食品監督與環境監督等。
活體成像技術應用
動物模型已經成為癌癥,動脈粥樣硬化,神經系統疾病(如阿爾茨海默氏病)和傳染病研究中不可或缺的手段,而在這個過程中,很多情況下下需要使用到活體成像技術。原因是活體城鄉技術可用于研究觀測特異性細胞、基因和分子的表達或者相互作用關系,追蹤靶細胞,藥物,從分子和細胞水平對藥物療效進行成像,從病理水平評估
小動物活體成像技術
1、背景和原理1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事件。
活體成像技術的應用
光學活體成像技術主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。可見光體內成像通過對同一組實驗對象在不同時
活體動物體內光學成像(八)
關于技術應用42. 可以用熒光素酶基因標記干細胞嗎?如何標記? 可以,標記干細胞有幾種方法。一種是標記組成性表達的基因,做成轉基因小鼠,干細胞就被標記了,從此小鼠的骨髓取出造血干細胞,移植到另外一只小鼠的骨髓內,可以用該技術示蹤造血干細胞在體內的增殖和分化及遷徙到全身的過程。另外一種方法是用慢病
活體動物體內光學成像(三)
(2) 免疫學與干細胞研究將熒光素酶標記的造血干細胞移植入脾及骨髓,可用于實時觀測活體動物體內干細胞造血過程的早期事件及動力學變化。有研究表明,應用帶有生物發光標記基因的小鼠淋巴細胞,檢測放射及化學藥物治療的效果,尋找在腫瘤骨髓轉移及抗腫瘤免疫治療中復雜的細胞機制。應用可見光活體成像原理標記細胞,建
活體動物體內光學成像(一)
活體動物體內光學成像主要采用生物發光與熒光兩種技術。生物發光是用熒光素酶基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cy5及Cy7等)進行標記。該技術最初是由美國斯坦福大學的科學家采用了世界上最優秀的高性能CCD研發與生產制造商Roper scientific公司最
活體動物體內光學成像(十)
3. 關于CCD的“背部薄化、背照射”與“冷”的確切含義是什么?之所以叫冷CCD,是由于CCD的芯片溫度下降到零下70℃或110℃,可以降低噪音,提高檢測的靈敏度。Cryogenic 的制冷技術可以使CCD的溫度達到-70℃到 -110℃,那樣的溫度可以使背照射冷CCD的暗電流減少到可忽略不
活體動物體內光學成像(九)
關于活體成像系統常見問題解答1. 關于小動物活體成像技術的起源與發展活體動物體內光學成像主要采用生物發光與熒光兩種技術。生物發光是用熒光素酶基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cy5及Cy7等)進行標記。該技術最初是由美國斯坦福大學的科學家采用了世界上最優秀
活體動物體內光學成像(六)
17. 標記好的細胞的熒光素酶是隨機還是插入固定的位點? 插入的位點是隨機的,但每一個構建好的細胞株我們都做過詳細的分析,與其母細胞株進行詳細的比較,證明熒光素酶的插入對細胞的各種特性(包括生長周期, 成瘤性等)沒有造成影響。18. 能標記病毒嗎?能標記病毒的某一個基因嗎? 可以標記病毒,由于病毒在
活體動物體內光學成像(五)
3. 底物熒光素(Luciferin)是如何進入小鼠體內的?需要多少? 熒光素是腹腔注射或尾部靜脈注射進入小鼠體內的,約一分鐘就可以擴散到小鼠全身。 大部分發表的文章中,熒光素的濃度是150mg/kg (見下圖)。20克的小鼠需要3毫克的熒光素,價錢約兩到三美元。常用方法是腹腔注射,擴散較慢
活體動物體內光學成像(四)
3. 標記細菌(1) 細菌侵染研究可以用標記好的革蘭氏陽性和陰性細菌侵染活體動物, 觀測其在動物體內的繁殖部位、數量變化及對外界因素的反應。(2) 抗生素藥物利用標記好的細菌在動物體內對藥物的反應,醫藥公司和研究機構可用這種成像技術進行藥物篩選和臨床前動物實驗研究。4. 基因表達和蛋白質相互作用(1
活體動物體內光學成像(七)
關于生物發光與熒光及其它技術的比較 34. 熒光檢測與生物發光檢測的優勢與劣勢比較如何? ?熒光發光需要激發光,但生物體內很多物質在受到激發光激發后,也會發出熒光,產生的非特異性熒光會影響到檢測靈敏度。特別是當發光細胞深藏于組織內部,則需要較高能量的激發光源,也就會產生很強的背景噪音。作為體內報告源
動物活體成像系統的技術指標
動物活體成像系統是一種用于化學、生物學領域的醫學科研儀器,于2016年01月25日啟用。 技術指標 采用背照射、背部薄化科學一級CCD;CCD采用電制冷方式,工作溫度達到絕對-90℃,溫度可視化;CCD尺寸不小于1.3 x 1.3 cm;CCD有效像素數量不少于1024 x 1024;CCD
活體動物體內成像技術文獻
1. 細胞凋亡與白血病Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 HelixSCIENCE 2004,305:1466-1470?通過對BCL-2蛋白家族BID的BH3結構域進行化學修飾,使其容易穿過細胞膜,在活體內研究其
小動物活體成像技術概覽(一)
1. 背景和原理:1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事
小動物活體成像技術概覽(三)
2-4超聲成像此外,超聲分子影像學是近幾年超聲醫學在分子影像學方面的研究熱點。它是利用超聲微泡造影劑介導來發現疾病早期在細胞和分子水平的變化,有利于人們更早、更準確地診斷疾病。通過此種方式也可以在患病早期進行基因治療、藥物治療等,以期在根本上治愈疾病。2-5CT成像CT成像是利用組織的密度不同造成對
小動物活體成像技術概覽(四)
成像設備主要應用領域優點缺點PET報告基因表達,小分子示蹤高靈敏性,同位素自然替代靶分子,可進行定量移動研究需要回旋加速器或發生器,相對低的空間分辨率,輻射損害,價格昂貴SPECT報告基因表達,小分子示蹤同時使用多種分子探針,能同時成像,適于用作臨床成像系統相對較低的空間分辨率,輻射損害生物體之發光
活體動物體內生物發光和熒光成像技術基礎原理與應用二
(二)活體生物發光成像技術應用領域活體生物發光成像技術是一項在某些領域有不可替代優勢的技術,比如腫瘤轉移研究、藥物開發、基因治療、干細胞示蹤等方面。1.腫瘤學活體生物發光成像技術能夠讓研究人員能夠直接快速的測量各種癌癥模型中腫瘤的生長、轉移以及對藥物的反應。其特點是極高的靈敏度使微小的腫瘤病灶(少到