<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    微波光子雷達及關鍵技術(一)

    摘要雷達是人類進行全天候目標探測與識別的主要手段,多功能、高精度、實時探測一直是雷達研究者追求的目標。這些特性實現的基礎都是對寬帶微波信號的高速操控,但受限于“電子瓶頸”,寬帶信號的產生、控制和處理在傳統電子學中極為復雜甚至無法完成。光子技術與生俱來的大帶寬、低傳輸損耗、抗電磁干擾等特性,使其成為突破雷達帶寬瓶頸和“照亮雷達未來”的關鍵使能技術。同時光子系統重量輕、體積小、可集成,可以將雷達系統的體積重量降低數十倍,從而大大減輕飛機、衛星、艦艇等的載荷。因此光子技術的引入有可能改變現有雷達系統的體制,賦予雷達系統更加蓬勃的生命力。本文總結了國內外光子雷達系統的主要研究進展,討論了光子雷達系統中的關鍵技術,并展望了光子雷達及其關鍵技術的發展趨勢。關鍵詞微波光子雷達;信號產生;信號處理;波束形成未來的戰爭將是地、海、空、天一體化的多維空間立體戰,不但有水下、水面、空中、地面硬殺傷兵器在有形空間展開的火力戰,還有信息獲取傳感器與軟殺傷......閱讀全文

    微波光子雷達及關鍵技術(五)

    2.3 信道化接收與混頻微波光子信道化接收機在光域將寬帶的接收信號分割到多個窄帶的處理信道中,然后對每個窄帶信道中的接收信號進行光電探測和信號處理。相比傳統信道化接收機,微波光子信道化具有較強的抗電磁干擾能力、較大的承載帶寬和瞬時帶寬、極低的傳輸損耗等顯著優勢。而且信道化本質上是1個多通道并行處理系

    微波光子雷達及關鍵技術(一)

    摘要雷達是人類進行全天候目標探測與識別的主要手段,多功能、高精度、實時探測一直是雷達研究者追求的目標。這些特性實現的基礎都是對寬帶微波信號的高速操控,但受限于“電子瓶頸”,寬帶信號的產生、控制和處理在傳統電子學中極為復雜甚至無法完成。光子技術與生俱來的大帶寬、低傳輸損耗、抗電磁干擾等特性,使其成為突

    微波光子雷達及關鍵技術(六)

    2.5 光模數轉換隨著數字信號處理技術的飛速發展,雷達回波的信息提取基本上都在數字域完成。作為連接模擬域回波和數字信號間的橋梁,ADC在雷達接收機中發揮著重要的作用。由于ADC孔徑抖動等原因,大的模擬帶寬和高的有效位數在完全基于電子技術的ADC中難以兼得。因此,電ADC的性能往往成為限制寬帶雷達發展

    微波光子雷達及關鍵技術(三)

    圖7、PHODIR 與商用SEAEAGLE 成像對比Fig. 7 Imaging result comparison between the PHODIR and SEAEAGLE(a)目標的圖像;(b)S 波段探測到的一維距離像;(c)X 波段探測到的一維距離像;(d)利用上述融合算法合成

    微波光子雷達及關鍵技術(四)

    2、微波光子雷達關鍵技術雷達是通過發射電磁波并接收回波來探測目標位置、速度和特性的系統,一般由中控設備、發射機、接收機等組成,基本原理如圖14所示。波形發生器產生的雷達波形與本振信號混頻至所需波段,通過波束形成網絡實現發射波束的空間指向控制,經由陣列天線輻射到空間。接收時,接收到的信號經過分發、切換

    微波光子雷達及關鍵技術(二)

    美國休斯飛機公司電光混合真延時模塊示意Fig. 2 Hybrid electronic and optical true time delay module of Hughes Aircraft進入21世紀后,隨著光纖通信的蓬勃發展,光子技術越來越成熟,光電轉換效率不斷提升,微波光子技術也得到了飛速

    單光子激光雷達與線性固態激光雷達

    上圖是豐田于 2013 年開發的基于 SiSPAD (硅單光子)的激光雷達原型。水平角分辨率高達 0.05 度,水平 FOV 為 170 度,垂直 FOV 較差,僅為 4.5 度。采用了少見了 870 納米激光,脈沖帶寬為 4 納秒,每秒高達 8 億 TOF,云點數為 326400,云點密度大約是

    微波光子信號的產生(二)

    1.3、諧波頻率產生外差法的主要缺陷在于需要進行差拍的兩路不同頻率的光保持穩定的相位關系以確保獲得比較小的相位噪聲,而如果能從一個光源出發通過各種非線性效應產生高次諧波分量,就可以得到具有相對穩定相位關系的若干光頻率,只要能從其中選取兩個進行拍頻,則可以解決這個問題。在前面提到的調制非線性就是一個例

    微波光子信號的產生(一)

    伴隨微波射頻通信技術的發展與光通信技術的日益成熟,兩者間的相互滲透成為一種需要并逐步成為可能。在現有器件條件下,在100GHz帶寬范圍內,電、光模擬信號可以很方便的自由轉換,在光域對模擬信號進行選頻濾波,放大也可以方便地實現,這就為微波光子(Microwave Photonics)技術出現提

    微波光子濾波技術概述(一)

    微波光子技術[1]是伴隨著半導體激光器、集成光學、光纖波導光學和微波單片集成電路的發展而產生的一種新興技術,是微波和光子技術結合的產物,它在射頻(RF)信號的產生、傳輸和處理等方面具有潛在的應用前景。由于射頻信號的光濾波技術具有可實現寬帶可調諧濾波的功能,因而能夠克服電子瓶頸、濾除強干擾信號等優勢。

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频