磁場導航納米機器人精準擊殺腫瘤細胞
團隊用靶向給藥微納米機器人在小鼠身上做了實驗。他們用了乳腺癌細胞種植的皮下腫瘤模型,對30只小鼠跟蹤了30天。團隊發現,這種方法對小鼠腫瘤確有靶向殺傷作用,且對周圍正常組織的影響最小。 上映于1966年的科幻電影《神奇旅程》,講了這么一個故事:為給一名科學家實行高難度血管手術,5名醫生被縮小成頭發絲大小,置于針筒中,注射進他體內。5人駕駛著“潛艇”,躲過了免疫細胞的攻擊,一路乘風破浪,成功完成任務。 50多年過去,當初的幻想,已經部分成為了現實。微納米醫療機器人,就被認為是一種頗具前途的智能給藥平臺,目前被廣泛用于腫瘤的靶向治療。 近日,北京航空航天大學機械工程及自動化學院“卓越百人”副教授、博士生導師馮林課題組,研究出了一種新的更為智能的腫瘤靶向機器人。它有了偽裝,還有了導航,能夠在磁場的驅動下,精準抵達戰場,投擲殺傷腫瘤的彈藥。 讓巨噬細胞吞下納米藥物,變身微納米機器人 讓納米機器人裝載藥物,到達指定地點,定向......閱讀全文
磁場導航 納米機器人精準擊殺腫瘤細胞
團隊用靶向給藥微納米機器人在小鼠身上做了實驗。他們用了乳腺癌細胞種植的皮下腫瘤模型,對30只小鼠跟蹤了30天。團隊發現,這種方法對小鼠腫瘤確有靶向殺傷作用,且對周圍正常組織的影響最小。 上映于1966年的科幻電影《神奇旅程》,講了這么一個故事:為給一名科學家實行高難度血管手術,5名醫生被縮小成
Nature子刊:DNA納米機器人精準靶向癌癥
導讀:我們目前對抗惡性腫瘤的方法還遠遠不夠,常見的化療和放射治療有時很成功,但也會帶來巨大的副作用。這主要是因為體內的健康細胞也會被“連累”受到化學物質和輻射的“轟擊”。研究人員一直在努力尋找一種靶向腫瘤且不傷害健康細胞的方法。而2月12日《Nature Biotechnology》雜志上發表的
實錘!納米顆粒靶向可有效識別腫瘤
在納米顆粒上裝載識別配體,對腫瘤進行主動識別,從而實現靶向治療是腫瘤治療的重要研究方向,然而近年來這種方式的有效性越發受到質疑。我國科研人員最新研究表明,利用納米顆粒靶向識別腫瘤是有效的,但其效果受靶向修飾模式影響明顯。 開展這一研究的科研人員為中國科學院武漢病毒研究所李峰研究員與中國科學院生
利用仿生脂蛋白調節腫瘤基質提高納米藥物靶向腫瘤細胞
實體瘤中腫瘤基質細胞(如TAM、CAF等)和細胞外基質組成異常復雜的瘤內遞送屏障,嚴重阻礙了藥物在腫瘤組織中的滲透及其靶向腫瘤細胞的遞送。并且,瘤內腫瘤細胞分布呈高度異質性,即使制備了納米制劑也難以突破上述遞送屏障靶向腫瘤細胞,嚴重影響了其臨床治療效果。 針對上述難題,中科院上海藥物所張志文、
新型納米探針可用于腫瘤靶向發光示蹤
稀土發光納米晶由于可以在近紅外光激發下產生上轉換/下轉移發光,具有發光壽命長、量子產率高和發光波長可調等優點,在體外診斷與醫學影像研究中受到廣泛關注。目前稀土納米晶的可控合成與發光調控已經取得了較好的發展,但是高質量的稀土納米晶通常在油相中合成,如何將油相分散的稀土納米晶設計成具有良好水溶性、生
納米中心腫瘤靶向納米給藥系統研究取得新進展
疾病部位靶向給藥系統一直是藥劑學研究的熱點,但人體內非常復雜的環境因素明顯影響了藥物靶向治療的效果。腫瘤組織血管和生理特征的異常使得納米載體攜帶抗腫瘤藥物進入機體后,往往富集在腫瘤血管的周邊或腫瘤細胞的間隙然后釋放出藥物,經常導致細胞內藥物的濃度較低,治療效果并不非常明顯。 最
仿生納米籠可特異性靶向腫瘤干細胞抗腫瘤轉移
腫瘤的轉移是導致腫瘤患者死亡的主要原因,其中腫瘤干細胞(CSCs)被視為腫瘤轉移的根源。CSCs在腫瘤組織中比例非常少,且主要分布在腫瘤組織血管周圍或深部厭氧區域。如何突破各種生理屏障,將抗癌藥物高效遞送到腫瘤組織并特定靶向腫瘤CSCs是腫瘤轉移治療的一大挑戰。 中國科學院上海藥物研究所藥物制
國家納米中心實現腫瘤靶向治療的“激光制導”
腫瘤的靶向治療開創了腫瘤治療的新思路。納米藥物因其特定的尺寸,可利用腫瘤組織的EPR效應 (enhanced permeability and retention effect) 提高藥物對腫瘤組織的選擇性,在一定程度上實現了腫瘤的被動靶向治療。為進一步提高靶向效應,科學家們一直致力于納米藥物的
新策略!納米治療藥物靶向全身轉移性腫瘤!
腫瘤切除、化療等常規臨床治療失敗的主要原因是腫瘤轉移控制不力。轉移包括三個步驟:(i) 腫瘤細胞通過上皮間質轉化 (EMT) 從原發部位滲入循環系統,(ii) 循環腫瘤細胞 (CTC) 與血小板形成“微血栓”以逃避循環中的免疫監視,以及 (iii) CTC 在轉移前的生態位中定植。 2021年
周民團隊研制出微納機器人 利用光合作用靶向治療腫瘤
近日,浙江大學醫學院附屬第二醫院/轉化醫學研究院周民研究員團隊研制出一款微納機器人,通過以微藻作為活體支架,“穿上”磁性涂層外衣,靶向輸送至腫瘤組織,成功改善腫瘤乏氧微環境并有效實現磁共振/熒光/光聲三模態醫學影像導航下的腫瘤診斷與治療。這項研究刊登在《先進功能材料》,并被遴選為當期封面。