1897年,德國生化學家E.畢希納發現離開活體的釀酶具有活性以后,極大地促進了生物體內糖代謝的研究。釀酶發現后的幾年之內,就揭示了糖酵解是動植物和微生物體內普遍存在的過程。英國的F.G.霍普金斯等于1907年發現肌肉收縮同乳酸生成有直接關系。英國生理學家A.V.希爾,德國的生物化學家O.邁爾霍夫、O.瓦爾堡等許多科學家經歷了約20年,從每一個具體的化學變化及其所需用的酶、輔酶以及化學能的傳遞等各方面進行探討,于1935年終于闡明了從葡萄糖(6碳)轉變其中乳酸(3碳)或酒精(2碳)經歷的12個中間步驟,并且闡明在這過程中有幾種酶、輔酶和ATP等參加反應。......閱讀全文
1897年,德國生化學家E.畢希納發現離開活體的釀酶具有活性以后,極大地促進了生物體內糖代謝的研究。釀酶發現后的幾年之內,就揭示了糖酵解是動植物和微生物體內普遍存在的過程。英國的F.G.霍普金斯等于1907年發現肌肉收縮同乳酸生成有直接關系。英國生理學家A.V.希爾,德國的生物化學家O.邁爾霍夫
今天已知的糖酵解途徑需要近100年的時間才能完全闡明。需要許多較小實驗的綜合結果才能從整體上理解該途徑。了解糖酵解的xxx步始于19世紀的葡萄酒工業。出于經濟原因,法國葡萄酒業試圖調查為什么葡萄酒有時會變得令人討厭,而不是發酵成酒精。法國科學家路易斯巴斯德在1850年代研究了這個問題,他的實驗結果開
今天已知的糖酵解途徑需要近100年的時間才能完全闡明。需要許多較小實驗的綜合結果才能從整體上理解該途徑。了解糖酵解的xxx步始于19世紀的葡萄酒工業。出于經濟原因,法國葡萄酒業試圖調查為什么葡萄酒有時會變得令人討厭,而不是發酵成酒精。法國科學家路易斯巴斯德在1850年代研究了這個問題,他的實驗結果開
催化劑最早由瑞典化學家貝采里烏斯發現。100多年前,有個魔術“神杯”的故事。 有一天,瑞典化學家貝采里烏斯在化學實驗室忙碌地進行著實驗,傍晚,他的妻子瑪利亞準備了酒菜宴請親友,祝賀她的生日。貝采里烏斯沉浸在實驗中,把這件事全忘了,直到瑪麗亞把他從實驗室拉出來,他才恍然大悟,匆忙地趕回家。一進屋
1827年,Auguste Arthur Plisson和étienne Ossian Henry通過水解1806年從蘆筍汁中分離出的蘆筍胺(asparagine),首次發現了天冬氨酸。他們最初的方法是用氫氧化鉛,但現在更常用其他各種酸或堿來代替。 [9] 而后陸續有幾個氨基酸被單獨發現,而最后
糖酵解過程是從葡萄糖開始分解生成丙酮酸的過程,全過程共有10步酶催化反應。 1.葡萄糖磷酸化 糖酵解第一步反應是由己糖激酶催化葡萄糖的C6被磷酸化,形成6-磷酸葡萄糖。該激酶需要Mg2+離子作為輔助因子,同時消耗一分子ATP,該反應是不可逆反應。 2.6-磷酸葡萄糖異構轉化為6-磷酸果糖
正常生理條件下,人體內的各種代謝過程受到嚴格而精細的調節,以保持內環境穩定,適應機體生理活動的需要。這種調節控制主要是通過改變酶的活性來實現的。己糖激酶(葡萄糖激酶)、磷酸果糖激酶-1、丙酮酸激酶是糖酵解的關鍵酶,它們的活性大小,直接影響著整個代謝途徑的速度和方向,其中以磷酸果糖激酶-1最為重要
糖類最主要的生理功能是為機體提供生命活動所需要的能量。糖分解代謝是生物體取得能量的主要方式。生物體中糖的氧化分解主要有3條途徑:糖的無氧氧化、糖的有氧氧化和磷酸戊糖途徑。催化糖酵解反應的一系列酶存在于細胞質中,因此糖酵解全部反應過程均在細胞質中進行。糖酵解是所有生物體進行葡萄糖分解代謝所必須經過
6-磷酸果糖激酶-1>丙酮酸激酶>己糖激酶 ATP/AMP比值的高低對6-磷酸果糖激酶-1活性的調節有重要意義。當ATP濃度較高時,6-磷酸果糖激酶-1幾乎無活性,糖酵解作用減弱;當AMP累積,ATP較少時,酶活性恢復,糖酵解作用加強;此外,H+也可抑制6-磷酸果糖激酶-1的活性,這樣可防止肌
科學家們在尋找導致細胞死亡的基因時,發現了一種叫端粒的存在于染色體頂端的物質。端粒本身沒有任何密碼功能,它就像一頂高帽子置于染色體頭上。 在新細胞中,細胞每分裂一次,染色體頂端的端粒就縮短一次,當端粒不能再縮短時,細胞就無法繼續分裂了。這時候細胞也就到了普遍認為的分裂100次的極限并開始死亡。