<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    一文了解便攜式拉曼光譜檢測儀(納米增強技術)

    便攜拉曼光譜儀主要適用于科研院所、高等院校物理和化學實驗室、生物及醫學領域等光學方面,研究物質成分的判定與確認;可以應用于石油產品的快速分類和成分定性定量分析;地質勘探的現場分析研究。該儀器以其結構簡單、操作簡便、測量快速高效準確,以低波數測量能力著稱;采用共焦光路設計以獲得更高分辨率,可對樣品表面進行um級的微區檢測,也可用此進行顯微影像測量,該儀器成為可移動小型實驗室。 工作原理 當一束頻率為v0的單色光照射到樣品上后,分子可以使入射光發生散射。大部分光只是改變方向發生散射,而光的頻率仍與激發光的頻率相同,這種散射稱為瑞利散射;約占總散射光強度的 10-6~10-10的散射,不僅改變了光的傳播方向,而且散射光的頻率也改變了,不同于激發光的頻率,稱為拉曼散射。拉曼散射中頻率減少的稱為斯托克斯散射,頻率增加的散射稱為反斯托克斯散射,斯托克斯散射通常要比反斯托克斯散射強得多,拉曼光譜儀通常測定的大多是斯托克斯散射,也統稱為......閱讀全文

    一文了解便攜式拉曼光譜檢測儀 (納米增強技術)

      便攜拉曼光譜儀主要適用于科研院所、高等院校物理和化學實驗室、生物及醫學領域等光學方面,研究物質成分的判定與確認;可以應用于石油產品的快速分類和成分定性定量分析;地質勘探的現場分析研究。該儀器以其結構簡單、操作簡便、測量快速高效準確,以低波數測量能力著稱;采用共焦光路設計以獲得更高分辨率,可對樣品

    一文了解紫外拉曼和拉曼光譜區別

      是否叫“紫外拉曼”關鍵要看光源,一般都是325的光源,在紫外區

    殼層隔絕納米粒子增強拉曼光譜新技術

      中科院院士、廈門大學化學化工學院田中群教授課題組與美國佐治亞理工學院王中林教授課題組合作,在電化學控制條件下獲得了多種分子或離子吸附在鉑、金等單晶電極上的表面拉曼光譜,該新技術尚屬首次,其研究成果發表在3月18日的英國《自然》雜志上。   表面增強拉曼光譜是一種非常強大的高靈敏分析技術,它可以

    拉曼課堂知識(四)—SERS表面增強拉曼光譜技術

    表面增強拉曼光譜技術的原理?表面增強拉曼光譜是指將待測分子吸附在粗糙的納米金屬材料表面,可使待測物的拉曼信號增強10的6-15次方倍的光譜現象,解決了普通拉曼光譜靈敏度低的問題。SERS活性基底的制備是獲得較高拉曼增強信號的前提條件,不同的增強基底對樣品的增強效果差別很大,SERS活性基底的材料、

    表面增強拉曼光譜

    吸附在粗糙化金屬表面的化合物由于表面局域等離子激元被激發所引起的電磁增強,以及粗糙表面上的原子簇及吸附其上的分子構成拉曼增強的活性點,這兩者的作用使被測定物的拉曼散射產生極大的增強效應。其增強因子可達103~107,已發現能產生SERS的金屬有Ag等少數金屬,以Ag的增強效應為最佳,最為常用。此技術

    一文了解拉曼光譜測試的特點

      拉曼光譜(Raman spectra),是一種散射光譜。拉曼光譜分析法是基于印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。  拉曼散射光譜具有以下明顯的特征  a.拉曼散射譜線的波數

    拉曼知識(六)-表面增強拉曼光譜技術有哪些應用?

    表面增強拉曼光譜技術有哪些應用?SERS活性體系的不斷優化,促使SERS實驗領域不斷擴展,從探針分子到應用材料,從染料分子到熒光材料;從氨基酸、DNA、RNA到蛋白質;從有機到無機,從液體到氣體,從單分子吸附到多分子競爭吸附,從水體系到非水體系等等,作為一種光譜技術,SERS已成為靈敏度最高的研究界

    拉曼技術物理增強

    拉曼技術物理增強物理增強是長程的,化學增強是短程的。但是定量的理論還不成熟,也有人持有很不同的觀點,盡管理論上還有爭論。然而利用SERS的研究,卻在多方面開展起來。如已經用這一技術研究了腐蝕、催化的中間產物,金屬及熱分解過程,毒品的鑒定,蔬菜水果表面農藥的殘留的檢測,墨跡中微量成分的分析等等。由于巨

    表面增強拉曼光譜理論

    拉曼信號的產生是一個效率比較低的過程,檢測靈敏度較低。因此,如果沒有特殊的增強效應,拉曼技術很難應用于實際中。目前,常用的增強拉曼技術為表面增強拉曼技術。是有機分子吸附在Ag、Au、Cu納米粒子表面或粗糙的金屬電極表面,在電磁場或電荷轉移的作用下,實現拉曼信號大大增強的過程。SERS的發現使得拉曼光

    遠程表面增強拉曼光譜(SERS)技術進展

    拉曼光譜是分子名片,是研究分子結構的一種重要分析方法。自上世紀七十年代表面增強拉曼光譜(SERS)技術發現以來,隨著激光技術、納米科技的迅猛發展,SERS技術不但具有拉曼光譜的大部分優點,并能夠提供更豐富的化學分子的結構信息,可實現實時、原位探測,而且靈敏度高,數據處理簡單,準確率高,是非常強有力的

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频