Theory of CGH
Comparative genomic hybridization (CGH) is a fairly new molecular cytogenetic technique that allows detection of DNA sequence copy number changes throughout the genome in a single hybridization. CGH is based on co-hybridization of differentially labeled tumor and normal DNA to human metaphase chromosomes.
In a typical experiment:
The tumor DNA is labeled with FITC-dUTP and normal DNA with TexasRed-dUTP prior to hybridization.
Three images of the hybridization, representing both fluorescent labels as well as DNA counterstain (DAPI), are acquired using epifluorescence microscopy and a CCD camera interfaced to a computer.
Subsequently, an image analysis software program is used to calculate green-red fluorescence intensity ratio profiles along all chromosomes.
Regions of the genome that are either gained or lost in the tumor are indicated by the differences between binding of the two labeled DNAs as evidenced by the fluorescence intensity ratio profiles.
Thus, in a single hybridization it is possible to screen all chromosomal sites that may contain genes that are either deleted or amplified in cancer.
Sensitivity
The sensitivity of CGH in detecting gains and losses of DNA sequences is approximately 2-20 Mb. For example, a 10-fold amplification of a 200 kb region should be detectable under optimal hybridization conditions. Early CGH experiments were done using DNA isolated from freshly frozen tumor tissues. However, it has now been shown that DNA extracted from formalin-fixed paraffin-embedded archival tissue blocks can be used as well. Prior to CGH hybridization, DNA can be universally amplified using degenerate oligonucleotide-primed PCR (DOP-PCR), which allows the analysis of, for example, microdissected tumor samples. The latter technique is, however, more difficult and less reliable than CGH without PCR pre-amplification step.
Applications of CGH
CGH has been used to detect genetic aberrations in a variety of malignancies:
It has already revealed a complex genetic nature of cancer and indicated several novel chromosomal regions that are frequently altered in tumors.
Several CGH studies on prostate cancer have been published, e.g., loss of 6q, 8p, 13q, and 16q, as well as gains of 7p, 7q, 8q and Xq, have been found to be common alterations in prostate cancer.
CGH findings led also to the discovery of androgen receptor (AR) gene amplification in hormone-refractory recurrent prostate carcinomas.
真菌感染會對人類、動物和植物構成威脅,甚至帶來嚴重后果。來自德國杜塞爾多夫海因里希-海涅大學(HHU)等機構的科學家,在一項最新研究中,闡明了真菌感染的一個重要分子機制。這一研究有望促進新型抗真菌藥物......
細胞外基質(ECM)剛性是影響多種生物過程的重要機械線索。然而,對剛性傳感的分子機制的理解受到當前細胞力測量技術的空間分辨率和力靈敏度的限制。2023年10月5日,武漢大學劉鄭團隊在NatureMet......
RNA介導的轉錄后基因調控在生命個體抵御外源入侵的過程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、細菌和真核生物中的一種蛋白。它為非編碼小RNA提供錨位點,達到降解靶基因或者抑制翻譯......
英國帝國理工學院的科學家與牛津納米孔技術公司合作研制出一種新方法,可同時分析數十種不同類型的生物標志物,改變了對心臟病和癌癥等疾病的檢測,從而讓臨床醫生收集到有關患者疾病的更多信息。研究成果25日發表......
體細胞突變是腫瘤發生的標志,可用于癌癥的無創診斷。美國約翰·霍普金斯大學醫學院繪制細胞游離DNA單分子全基因組突變圖譜,用于癌癥無創檢測。該研究成果于近日發表在《NatureGenetics》雜志上,......
人們應用合成生物學手段已開發出精密的細胞生物傳感器,可用于檢測人類疾病。然而,生物傳感器尚未被設計用于檢測特定的細胞游離DNA序列和突變。美國加州大學圣迭戈分校等機構合作開發一種工程化細菌,可檢測活體......
近日,中國農業科學院深圳農業基因組研究所農業基因組學技術研發與應用創新團隊提出DNA數字存儲糾錯新算法,成功突破了冗余對糾錯能力的限制,將大幅提升DNA存儲糾錯能力。相關研究成果發表在《國家科學評論》......
生物多樣性喪失是三大環境危機之一。昆蟲作為龐大且多樣化的生物群體,幾乎占據各種類型棲息地,在生態系統中扮演著重要角色。“SITE-100”國際大科學計劃是中國科學院動物研究所研究員白明與英國自然博物館......
上海交通大學化學化工學院/變革性分子前沿科學中心樊春海院士與王飛副教授近期發展了一種支持通用性數字計算的DNA可編程門陣列(DNA-basedprogrammablegatearray,DPGA),可......
美國西弗吉尼亞大學研究人員實現了在原子水平上觀察合成DNA,從而了解了如何改變其結構以增強其剪刀功能。更多地了解這些合成DNA反應,或是未來解鎖醫學新技術的關鍵。研究結果發表在最近出版的《自然》子刊《......