<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 發布時間:2019-04-27 17:01 原文鏈接: QUALITATIVEANALYSISOFDNAFRAGMENTATIONBYAGAROSEGELELECTROPHORESIS

    1. Introduction

    • Nuclear morphology changes characteristic of apoptosis appear within the cell together with a distinctive biochemical event: the endonuclease-mediated cleavage of nuclear DNA. In fact, formation of DNA fragments of oligonucleosomal size (180-200 bp) is an hallmark of apoptosis in many cell types.

    • The present protocol provides a method for DNA separation of fragmented and intact DNA fractions and for their analysis by agarose gel electrophoresis. In apoptotic cells specific DNA cleavage becomes evident in electrophoresis analysis as a typical ladder pattern due to multiple DNA fragments. However, although this protocol is simple and generally able to provide good results, it is only qualitative because of its limitations in DNA recovery and solubilization. In order to obtain a cleaner DNA, other methods for DNA preparation are required (in some cases use of proteinase K for deproteinization is recommended).

    2. Protocol 
      
     

      2.1. Materials 
    • Cell suspension at 1-5x106 cells/ml in complete RPMI medium (A1)

    •  
    • TTE solution: TE buffer pH 7.4 (A1) with 0.2% Triton X-100 (store at 4°C)

    •  
    • NaCl 5M, ice cold

    •  
    • Isopropanol, ice cold

    •  
    • Ethanol at 70%, ice cold

    •  
    • TE buffer pH 7.4 (A1)

    •  
    • Loading buffer 10x (A1)

    •  
    • TBE buffer for electrophoresis (A1)

    •  
    • Ethidium bromide solution (A1)

    •  
    • Electrophoresis-grade agarose

    •  
    • DNA molecular weight markers

    •  
    • Refrigerated cell centrifuge (A3)

    •  
    • Microfuge (A3)

    •  
    • Heating block (A3)

    •  
    • Gel electrophoresis apparatus (A3)

    •  
    • DC power supply (A3)

    •  
    • UV transilluminator (A3)

    •  
    • Polaroid Camera + films (A3)

    •  
    •  

    • 2.2. Methodology


      • 1. Dispense 0.5 ml of cell suspension (no less than 5x105, otherwise DNA will not be detectable by photography of ethidium bromide stained gel, and no more than 5x106, to avoid difficult handling of too high amounts of insoluble DNA) in tubes labeled B (bottom).

      • 2. Centrifuge cells at 200xg at 4°C for 10 min.

        3. Transfer supernatants carefully in new tubes labeled S (supernatant).

        4. Add to the pellet in tubes B 0.5 ml of TTE solution and vortex vigorously. This procedure allows the release of fragmented chromatin from nuclei, after cell lysis (due to the presence of Triton X-100 in the TTE solution) and disruption of the nuclear structure (following Mg++ chelation by EDTA in the TTE solution).

        5. To separate fragmented DNA from intact chromatin, centrifuge tubes B at 20,000xg for 10 min at 4°C.

        6. Carefully transfer supernatants in new tubes labeled T (top).

        7. Add to the small pellet in tubes B 0.5 ml of TTE solution.

        8. Add to the 0.5 ml volume present in tubes B, S and T, 0.1 ml of ice-cold 5M NaCl and vortex vigorously. The addition of the salt should be able to remove histons from DNA.

        9. Add to each tube 0.7 ml of ice-cold isopropanol and vortex vigorously.

        10. Allow precipitation to proceed overnight at -20°C. This step can be shortened by putting samples in a bath of ethanol/dry ice for 1 hr.

        11. After precipitation, recover DNA by pelleting for 10 min at 20,000xg at 4°C.

        12. Discard supernatants by aspiration or by rapidly inverting tubes and carefully remove any drops or fluid remaining adherent to the wall of the tube with a paper towel corner. This can be a critical step because the pellet could be loosen and transparent, hard to be seen.

        13. Rinse the pellets by adding to each tube 0.5-0.7 ml of ice-cold 70% ethanol.

        14. Centrifuge tubes at 20,000xg for 10 min at 4°C.

        15. Discard supernatants by aspiration or by rapidly inverting tubes. Carefully remove any drops or fluid remaining adherent to the wall of the tube by inverting tubes over an absorbent paper towel for 30 min. Let air dry the tubes in upright position for at least 3 hr before proceeding.

        16. Dissolve DNA by adding to each tube 20-50 m l of TE solution and place the tubes at 37°C for 1-3 days. The redissolution of DNA may be a crical step, in fact it depends on the DNA quantity and size present in the samples. Thus, the non-fragmented DNA contained in the B tubes, may need higher volumes of TE and longer incubation times in order to be resuspended.

        17. Mix the samples of DNA with loading buffer by adding 10x loading buffer to a final concentration of 1x. The addition of loading buffer to samples allows to load gel wells more easily and to monitor the run of samples.

        18. Place samples in a heating block at 65°C for 10 min and immediately load 10-20 m l of them to each well of a standard 1% agarose gel containing ethidium bromide 0.5 mg/ml. Appropriate DNA molecular weight markers should be included. Ethidium bromide is a potential carcinogen: wear gloves and handle with care.

        19. Run the electrophoresis in standard TBE buffer after setting the voltage to the desired level. During electrophoresis it is possible to monitor the migration of samples by following the migration of bromophenol blue dye contained in the loading buffer.

        20. Stop the electrophoresis when the dye reaches about 3 cm from the end of the gel.

        21. To visualize DNA, place the gel on a UV transilluminator and take photos of the gel. Wear eye and skin protection when UV are on. 
         

    •  


    相關文章

    古DNA揭示結核病如何塑造人類免疫系統

    新冠肺炎(COVID-19)只是一種對人類生活產生了巨大影響的新發傳染病。而一項新研究利用古人類DNA揭示了在過去2000年里,結核病如何影響歐洲人,特別是對人類基因組的影響。3月5日,相關論文刊登于......

    研究發現DNA甲基化修飾精準調控植物生物鐘周期

    生物鐘通過協調細胞內代謝和生理活動的節律性以適應由地球自轉而產生的晝夜光溫周期性變化,為植物生長發育提供適應性優勢。在多種真核生物中均已發現組蛋白修飾可參與調控生物鐘周期,但DNA甲基化作為表觀修飾的......

    加深癌癥了解!新基因工具可按時序編輯DNA序列

    據物理學家組織網23日報道,美國研究人員在最新一期《分子細胞》雜志撰文指出,他們發明了一種新基因編輯技術,可按時間順序對切割點或編輯點進行編輯,有望促進癌癥研究等領域的發展。基因編輯領域的“當紅炸子雞......

    日本團隊用單分子動力學解析DNA雜交基本過程

    一項發表在《化學科學》(ChemicalScience)上的研究成果顯示,日本東京理工大學團隊使用掃描隧道顯微鏡(STM)測量單分子電導率的變化來探索DNA“雜交”(由兩條單鏈DNA形成雙鏈DNA)。......

    一文了解電泳分離dna的原理

    瓊脂糖凝膠電泳是常用的用于分離、鑒定DNA、RNA的方法,這種電泳方法以瓊脂凝膠作為支持物,利用DNA分子在泳動時的電荷效應和分子篩效應,達到分離混合物的目的。DNA分子在高于其等電點的溶液中帶負電,......

    將數據存到DNA里!全世界的信息只有1公斤重

    將數據存到DNA里!全世界的信息只有1公斤重大數據時代,我們在網絡上每一個動作,比如網上沖浪、觀看視頻,甚至跑步、走路等日常行為,每分每秒都在產生大量數據。它們如一條條河流,匯聚成數據的汪洋大海。如此......

    腫瘤細胞外囊泡DNA分子邏輯運算研究獲進展

    近日,中國科學院國家納米科學中心孫佳姝課題組與上海交通大學教授韓達課題組、中國人民解放軍總醫院第五醫學中心教授張少華合作,在腫瘤細胞外囊泡DNA分子邏輯運算與乳腺癌分子分型研究方面取得進展。相關研究成......

    Nature子刊:基于DNA折紙納米結構的可快速解毒納米抗凝劑

    透析環路中產生的凝血反應是急慢性腎損傷患者進行血液透析時出現的一種問題。肝素與低分子量肝素常用于臨床血液透析過程中,但具有不良反應;而其解毒劑魚精蛋白具有一定的毒性。開發出高效、可控、安全的抗凝劑用于......

    科學家探明DNA甲基化如何調控豬肉性狀

      近日,中國農業科學院(深圳)農業基因組研究所豬基因組設計育種創新團隊在豬產肉性狀形成的表觀遺傳研究方面取得重要新進展,相關研究成果在線發表于國際期刊《核酸研究》(Nucleic......

    為存數據研究人員給細菌編程

    “HelloWorld!”是許多程序員的第一行代碼,但你見過從活的生物體內讀出的“HelloWorld!”嗎?哥倫比亞大學的一個研究小組做到了,他們把數據寫入活細菌的DNA,相關研究11日發表在《自然......

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频