<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    Nature提出細胞自毀新學說

    我們染色體末端的特殊結構――端粒決定了細胞可以在多長的時間里繼續復制自身。長期以來人們一直在研究它與衰老過程和癌癥的關聯。現在來自Salk研究所的一個研究發現表明,在細胞阻止腫瘤的自毀程序中端粒有可能比以往認為的要更加重要,有可能可以利用這一功能來改善癌癥治療。這項研究發布在《自然》(Nature)雜志上。 當細胞在有絲分裂過程中進行復制時,它們的端粒每次都會縮短一點點。最終,在多次的細胞分裂后,端粒會變為極短,由此向細胞發出停止分裂的信號。這一正常的過程充當了抵御癌癥的屏障。這一信號通路存在缺陷的細胞,會繼續越過這一階段進行自毀。 這一細胞毀滅過程通常可以阻止遺傳不穩定或受損的細胞進行復制。但許多的癌細胞可通過保護端粒來阻止這一自毀信號繞過這一危機,使得細胞可以繼續增殖。 論文的資深作者、Salk分子和細胞生物學實驗室教授Jan Karlseder說:“我們著手去了解危機中的細胞死亡機制,發現端粒作為腫瘤形成的障礙......閱讀全文

    深度解讀:端粒長度與疾病發生的關聯

      端粒是真核生物染色DNA末端的特殊結構,早在20世紀80年代中期,科學家們就發現了端粒酶,當細胞DNA復制終止時,在端粒酶的幫助下DNA就能夠通過端粒依賴模版的復制,補償由去除引物引起的末端縮短,因此在端粒的保持過程中,端粒酶至關重要;但隨著細胞分裂次數的增加,端粒的長度逐漸縮短,當端粒變得不能

    端粒酶研究領域的重要成果!

      本文中,小編整理了多篇研究報告,共同聚焦科學家們在端粒酶研究領域取得的重要成果,分享給大家!圖片來源:Vimeo  【1】PNAS:促進癌癥的端粒酶也能保護健康細胞  doi:10.1073/pnas.1907199116  馬里蘭大學和美國國立衛生研究院的新研究揭示了端粒酶的新作用。端粒酶在正

    2012國家自然科學基金評審結果名單之復旦大學(生物類)

      來自國家自然科學基金委員會的消息,國家自然科學基金委員會公布了2012年度面上項目、重點項目、重大國際(地區)合作研究項目、青年科學基金項目、地區科學基金項目、海外及港澳學者合作研究基金項目、科學儀器基礎研究專款項目等方面的評審結果。有關評審結果將通知相關依托單位,其科研管理人員可登錄

    想長壽,還沒副作用?端粒改造了解一下

      端粒(Telomere)是存在于真核細胞染色體末端的一小段簡單的DNA高度重復序列(TTAGGG)-蛋白質復合體,它與端粒結合蛋白一起構成了特殊的“帽子”結構,作用是保持染色體的完整性和控制細胞分裂周期。端粒、著絲粒和復制原點是染色體保持完整和穩定的三大要素。  端粒的長度反映細胞復制史及復制潛

    【盤點】衰老與疾病的關聯性研究進展

      人為什么會變老?對于人類來說,如何才能長生不老真的是一個令人著迷的問題。但是至今為止都沒有一個讓人滿意的答案。衰老一直是生命過程中的核心環節,也是影響整個人類社會健康發展的重要問題。目前世界各國均面臨著嚴重的人口老齡化,數據顯示到2050年約三分之一的中國人口年齡將超過60歲。因此,深入了解衰老

    端粒效應——揭開染色體與衰老之間的秘密

      衰老是個古老而神秘的話題,長生不老是人類一直追求的目標,而生物體的衰老卻是一個必然的過程,是隨著時間的推移,機體從構成物質、組織結構到生理功能的喪失退化的過程。  近日,《實驗醫學雜志》刊發的一項研究表明我們的染色體會隨著機體的變老而一起變老。那么我們能不能通過改變染色體來延緩衰老、保持健康長壽

    端粒效應——揭開染色體與衰老之間的秘密

      衰老是個古老而神秘的話題,長生不老是人類一直追求的目標,而生物體的衰老卻是一個必然的過程,是隨著時間的推移,機體從構成物質、組織結構到生理功能的喪失退化的過程。  近日,《實驗醫學雜志》刊發的一項研究表明我們的染色體會隨著機體的變老而一起變老。那么我們能不能通過改變染色體來延緩衰老、保持健康長壽

    中科院、武漢大學聯合發表PNAS新文章

      來自中科院動物研究所、武漢大學的研究人員在新研究中發現了一種新型端粒和端粒酶相互作用蛋白,證實其具有解開端粒G-quadruplex,促進哺乳動物細胞中端粒延伸的功能。研究成果發表在11月26日的《美國科學院院刊》(PNAS)雜志上。   中科院動物研究所的譚錚(Zheng Tan)研究員和武

    2012國家自然科學基金哪些干細胞項目資助金額最大

      國家自然科學基金委員會公布了2012年度面上項目、重點項目、重大國際(地區)合作研究項目、青年科學基金項目、地區科學基金項目、海外及港澳學者合作研究基金項目、科學儀器基礎研究專款項目等方面的評審結果。有關評審結果將通知相關依托單位,其科研管理人員可登錄科學基金網絡信息系統(https:

    深度解讀:端粒與癌癥的那些事!

      當機體細胞分裂時,子代細胞通常會接收來自母體細胞基因組的相同拷貝,然而在細胞分裂過程中偶然性的錯誤往往會產生引發癌癥的基因突變;為了避免有害基因對有機體的不利影響,產生偏離正常染色體數量的突變細胞就會被細胞的保護性機制所清除;近日,來自德國弗里茨—李普曼研究所( Fritz Lipmann In

    研究稱生活壓力致DNA質量下降 早亡風險增大

       近日據外媒報道,美國一項最新研究發現,艱苦的成長環境會對窮人產生影響。生活壓力會在他們的基因中留下長久、有害的印記,以致窮人的DNA質量下降,早死的可能性也就越大。  美國斯坦福大學進行的一項研究調查惡劣人類生活對其DNA的影響,發現如果生活因貧窮而面臨較大壓力的話,人體主宰壽命長短的染色體端

    Nature:靶向端粒或有望提高癌癥化療效果

      位于染色體末端的端粒決定細胞能持續自我復制的時間長久,一直以來人們關于端粒與衰老和癌癥的研究比較多。Salk研究所的研究人員發現,端粒在細胞自毀程序(防止腫瘤)中的作用比以前認識的還要大,這可能被利用來提高癌癥的治療。  細胞每進行一次有絲分裂,端粒就縮短一點。最后經過多次細胞分裂,端粒變得非常

    2017年7月Cell期刊不得不看的亮點研究

      7月份即將結束了,7月份Cell期刊又有哪些亮點研究值得學習呢?小編對此進行了整理,與各位分享。  1.Cell:中科院生物物理所王艷麗/章新政課題組從結構上揭示Cas13a切割RNA機制  doi:10.1016/j.cell.2017.06.050  作為一種VI-A型CRISPR-Cas系

    組織學研究方法

    (一)一般光學顯微鏡術應用一般光學顯微鏡(簡稱光鏡)觀察組織切片是組織學研究的最基本方法。取動物或人體的新鮮組織塊,先用固定劑(fixative)固定(fixation),使組織中的蛋白質迅速凝固,防止細胞自溶和組織腐敗。常用的固定劑如灑精、甲醛、醋酸、苦味酸、四氧化鋨等,一般常將幾種固定劑配制成混

    2018年糖尿病專題盤點

      2018年即將過去,年末為大家獻上生物谷本年度糖尿病專題盤點,希望讀者朋友們能夠喜歡。1. Nature:利用細胞替換療法治療1型糖尿病取得重大進展!胞外基質組分決定著胰腺祖細胞的命運DOI: 10.1038/s41586-018-0762-2  I型糖尿病是一種自身免疫性疾病,它會破壞胰腺中產

    童坦君:君子坦蕩厚積薄發 衰老世界探究引領

      君子坦蕩厚積薄發 衰老世界探究引領  童坦君  童坦君,1934年生于浙江寧波,1959年畢業于北京醫學院,同年考取本校生物化學專業研究生,師從劉思職院士,從事腫瘤生物化學研究。1988年后轉向細胞衰老的分子機理研究,建立細胞衰老評價體系,揭示p16等細胞衰老相關基因的作用機制、基因調

    2012國家自然科學基金評審結果名單之復旦大學(生物類)

      301 81201256 牛辰 復旦大學 絲/蘇氨酸蛋白激酶Stk調控表皮葡萄球菌生物膜和毒力的分子機制研究 H1901 青年科學基金項目 23 2013-1-1 2015-12-31   302 81201277 毛日成 復旦大學 干擾素刺激基因MS4A4A抑制乙型肝炎病毒復制的機制

    Nature:端粒酶結構解析工作最新研究進展

      端粒酶(Telomerase)主要負責合成能夠保護染色體末端完整性的DNA片段。最近發現的端粒酶復合體的組裝機制有望幫助我們更好地認識其結構以及相關的功能。  早期有關DNA復制機制的研究發現了一個驚人的現象,即細胞在每一輪分裂的時候都會讓染色體DNA的末端縮短一點點,如果放任不管,那么終究有一

    國家重大科學研究計劃2011年度重要支持方向確定

    各省、自治區、直轄市、計劃單列市科技廳(委、局),新疆生產建設兵團科技局,國務院各有關部門辦公廳(室):  國家重大科學研究計劃是《國家中長期科學和技術發展規劃綱要(2006-2020年)》(以下簡稱《規劃綱要》)部署的、引領未來發展、對科學和技術發展有很強帶動作用的基礎研究發展計劃。  

    PNAS:患病心臟中的心肌細胞端粒較短

      根據斯坦福大學醫學院研究人員的一項新研究,一類患有叫做“心肌病”的心臟病患者心肌細胞中的端粒異常短。端粒是一種DNA序列,可作為染色體末端的保護帽。  這一發現與之前的一項研究相吻合,該研究表明患有杜氏肌營養不良癥(一種遺傳性肌肉萎縮疾病)的人在其心肌細胞端粒較短,這些患者通常因心力衰竭而過早地

    Cell子刊解析癌癥形成關鍵信號

      來自Salk生物研究學院的一個科學家小組,確定了一個重要的細胞周期調控信號遭到破壞,導致癌細胞增殖的原因。他們獲得的端粒相關研究發現,為找到預防措施對抗癌癥、老化及其他疾病提供了一個有潛力的靶點。研究結果發表在7月11日的《分子細胞》(Molecular Cell)雜志上。   端粒是指位

    干細胞要想健健康康 端粒長度就必須剛剛好

      生物通報道:端粒是染色體末端的保護結構,自從研究人員將“端粒的縮短”與“衰老和疾病”聯系在一起以來,科學家們一直都致力于理解控制端粒長度的因素。現在,美國Salk研究所的科學家們已經發現,干細胞中端粒延伸和修剪之間的平衡,可導致端粒不太短,也不太長,但長度剛剛好。  這一研究結果發表在2016年

    上海交通大學教授最新Cell文章:端粒酶如何被召集

      端粒酶被許多科學家認為是永生化(immortalization)的關鍵,原因在于這種酶可以把DNA復制損失的端粒填補起來,修復延長端粒,可以讓端粒不會因細胞分裂而有所損耗,使得細胞分裂的次數增加。但認識端粒酶的作用機制并不容易,近期來自上海交通大學醫學院第九人民醫院,上海精準醫學研究院等處的研究

    自噬原來是阻止癌癥的保護機制...

      就像鞋帶末端有塑料帽以防止系鞋帶時的磨損一樣,染色體的末端也有一種名為端粒的分子帽來保護染色體,當細胞持續分裂和復制DNA時防止它們相互融合。但是,當塑料帽丟失后鞋帶會變得凌亂,而當端粒丟失則可能會導致癌癥。左圖:正在進行自噬的細胞中的23對染色體看上去正常且健康,沒有出現結構或數量上的變化。右

    2014國家自然科學基金 衰老研究項目知多少

      來自國家自然科學基金委員會的消息,國家自然科學基金委員會公布了2014年國家自然科學基金申請項目評審結果,根據《國家自然科學基金條例》、國家自然科學基金相關類型項目管理辦法的規定和專家評審意見,決定資助面上項目、重點項目、部分重大項目、創新研究群體項目、優秀青年科學基金項目、青年科學基金項目、地

    強!中國學者用最短時間突破100篇CNS生命科學領域成果

      截止2020月7月27日,中國學者在Cell,Nature 及Science 發表了共計102項生命科學的研究成果,其中新冠肺炎領域占了近一半(共43篇)。iNature系統總結了這些研究成果:   按雜志來劃分:Cell 發表了30篇,Nature 發表了45篇,

    驚人發現!延長端粒“抗衰老”被證實

      隨著年齡的增長,衰老是我們所有人不得不面對的問題。很多人希望能夠減緩衰老的速度,甚至阻止衰老。經過多年的研究,抗衰老領域取得了很多給人帶來希望的成果。不過,想要在細胞水平實現真正的衰老逆轉(age-reversal)仍然非常困難。  7月31日,在線發表于Journal of the Ameri

    檢測細胞凋亡的實驗方法比較

    ◆ TUNEL 與 ELISA 檢測凋亡的方法比較TUNEL法   細胞凋亡中, 染色體DNA雙鏈斷裂或單鏈斷裂而產生大量的粘性3'-OH末端,可在脫氧核糖核苷酸末端轉移酶(TdT)的作用下,將脫氧核糖核苷酸和熒光素、過氧化物酶、堿性磷酸酶或生物素形成的衍生物標記到DNA的3

    JACC:重磅!科學家有望開發出返老還童的新技術

      我們每個人都會面臨衰老,沒有人能夠讓機體停止衰老,盡管近年來科學家們在人類衰老研究上取得了重大突破,但依然很難實現在細胞水平上對機體老化進行逆轉;近日,來自休斯敦衛理公會研究所的研究人員通過研究開發了一種新技術,或有望讓人類機體細胞恢復年輕狀態,相關研究刊登于國際雜志Journal of the

    JACC:科學家有望開發出返老還童的新技術

      我們每個人都會面臨衰老,沒有人能夠讓機體停止衰老,盡管近年來科學家們在人類衰老研究上取得了重大突破,但依然很難實現在細胞水平上對機體老化進行逆轉;近日,來自休斯敦衛理公會研究所的研究人員通過研究開發了一種新技術,或有望讓人類機體細胞恢復年輕狀態,相關研究刊登于國際雜志Journal of the

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频