<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    超疏水材料表面水滴運動方式破解

    水滴在超疏水表面被彈開的瞬間。 “在高度防水的超疏水材料表面,水滴會在壓力的作用下,像玩蹦床一樣快速自發彈走。”日前,瑞士科學家借助高速成像技術,破解了水滴在超疏水材料表面的運動方式。該研究有望在航空、汽車制造以及生物醫學等領域獲得應用,讓不結冰的機翼、不沾灰的汽車以及不凝露的玻璃成為現實。相關論文發表在最新一期的《自然》雜志上。 自然界一直就存在從物體表面自發地除去冷凝物質的技術,人類開發的不少新材料也借鑒了這些理念,但對其背后的機制,人們一直以來并不是特別清楚。 瑞士蘇黎世聯邦理工學院的迪莫斯·普萊卡寇斯和他的研究團隊,通過高速成像技術來研究水滴在超疏水材料表面停留和運動的模式,終于成功破解了這一難題。他們發現,在完全剛性的超疏水材料表面,水滴會漂浮起來,從而實現自我清除,整個過程就像體操運動員從蹦床上跳起來一樣。研究人員表示,這種現象來自水滴的快速汽化,由于水汽的流向受到水滴表面張力和表面紋理的限制,這使液滴下方......閱讀全文

    超疏水材料表面水滴運動方式破解

      水滴在超疏水表面被彈開的瞬間。  “在高度防水的超疏水材料表面,水滴會在壓力的作用下,像玩蹦床一樣快速自發彈走。”日前,瑞士科學家借助高速成像技術,破解了水滴在超疏水材料表面的運動方式。該研究有望在航空、汽車制造以及生物醫學等領域獲得應用,讓不結冰的機翼、不沾灰的汽車以及不凝露的玻璃成為現實。相

    超疏水仿生材料表面

    由于超疏水材料,特別是表面改性后仿生材料(仿荷葉超疏水或仿壁虎鋼毛結構超親水材料)的接觸角的表征因結構的特殊性,測試起來特別困難。現有的理論通常基于Wenzel和Cassie模型。這些理論為我們的分析奠定了一定的基礎,而實際應用于本征接觸角的表征計算時難度相當大。有一些科研人員力圖通過分析表面粗糙度

    微結構超疏水表面液滴的運動性質

    摘要:超疏水表面一般是指接觸角大于150°,運動角(或滾動角)小于5°的固體表面,其在基礎研究和現實應用方面存在巨大價值.通過光刻技術和自組裝膜技術制備了zui大接觸角為172°,zui小運動角為2°的超疏水表面.研究了Cassie狀態液滴的運動角與微結構表面參數之間的關系,發現運動角與微結構高度無

    微結構超疏水表面液滴的運動性質

    摘要:超疏水表面一般是指接觸角大于150°,運動角(或滾動角)小于5°的固體表面,其在基礎研究和現實應用方面存在巨大價值.通過光刻技術和自組裝膜技術制備了zui大接觸角為172°,zui小運動角為2°的超疏水表面.研究了Cassie狀態液滴的運動角與微結構表面參數之間的關系,發現運動角與微結構高度無

    超疏水材料的接觸角測試:荷葉

    本視頻演示了超疏水材料的接觸角測試過程,示例中采用了荷葉作為測試的樣品。超疏水材料的接觸角測試非常特殊,由于此時微小的重力均會對接觸角產生明顯影響,因而,此時只有Young-Laplace方程擬合法才能完成測試。通常的算法,如圓擬合、橢圓擬合均不符合要求,更談不上落后的量高、量角等方法。而在硬件方面

    蘭州化物所功能化超疏水材料研究取得進展

      中國科學院蘭州化學物理研究所先進潤滑與防護材料研究發展中心復合潤滑材料研究組在功能化超疏水材料研究方面取得新進展。   為了解決超疏水表面機械穩定性差和易被油污染的問題,蘭州化物所研究人員通過熱壓的方法制備了一種超疏水的CNTs-PTFE整體材料。該整體材料經砂紙多次刮擦后仍具有

    油水分離用超疏水石墨烯泡沫材料問世

      近日,中國科學院新疆理化技術研究所環境科學與技術研究室復合材料研究團隊科研人員通過調節材料表面粗糙度以及表面能,設計了具有超疏水特性的油水分離用石墨烯泡沫材料。相關研究結果發表在《膠體與界面科學雜志》上。  新型二維碳材料——石墨烯是構成其他石墨材料的基本單元,特別是由其為基本單元構成的三維結構

    超疏水材料的接觸角測試:荷葉(lotus leaf)

    超疏水材料的接觸角測試過程,示例中采用了荷葉作為測試的樣品。超疏水材料的接觸角測試非常特殊,由于此時微小的重力均會對接觸角產生明顯影響,因而,此時只有Young-Laplace方程擬合法才能完成測試。通常的算法,如圓擬合、橢圓擬合均不符合要求,更談不上落后的量高、量角等方法。而在硬件方面的特殊要求是

    測量超疏水材料接觸角遇到的最大障礙

      使用光學接觸角測量儀測量接觸角首先需要將液滴轉移到材料表面,但是由于材料的超疏水特性,液滴總是粘附在注射針的頂端,很難轉移到材料表面。如果過分增大液滴的體積,利用重量把液滴轉移下來,過大的液滴會增加準確測量接觸角的難度。有人不得不用手指輕彈注射針抖落液滴,這也不是規范的實驗操作。非接觸式注液是目

    基于Wenzel和Cassie模型超疏水仿生材料表面

    由于超疏水材料,特別是表面改性后仿生材料(仿荷葉超疏水或仿壁虎鋼毛結構超親水材料)的接觸角的表征因結構的特殊性,測試起來特別困難。現有的理論通常基于Wenzel和Cassie模型。這些理論為我們的分析奠定了一定的基礎,而實際應用于本征接觸角的表征計算時難度相當大。有一些科研人員力圖通過分析表面粗糙度

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频