合肥研究院高分散超細鉑/還原石墨烯復合材料獲進展
隨著不可再生能源的急劇消耗以及眾多環境污染問題的出現,人類對“綠色”能源的需求也更加迫切。作為眾多“綠色”能源的一種,直接甲醇燃料電池(DMFC)可以將甲醇和氧化劑的化學能直接轉化成電能。由于其燃料廉價、結構簡單、能量密度和轉換率高及近乎零污染等優點,這種燃料電池吸引了眾多研究者的關注。目前,直接甲醇燃料電池使用的電極催化劑大多為鉑基催化劑,而這種催化劑制備成本高,催化活性及穩定性差,嚴重阻礙了DMFC的商業化。因此,合成一種具有高催化活性且較為廉價的鉑基復合催化劑對DMFC的發展具有較大意義。 近來,基于液相激光熔蝕(Laser ablation in liquids, LAL)技術,中國科學院合肥物質科學研究院固體物理研究所研究人員發展了一種簡便且“綠色”的合成方法來制備Pt/rGO納米復合材料。圖(a)顯示的是這種復合材料的合成過程示意圖。LAL誘導的高活性錳膠體(MnOx)顆粒能均勻地負載在氧化石墨烯(GO)納米片......閱讀全文
石墨烯鉑復合材料
日前,中國科學院合肥物質科學研究院等離子體所低溫等離子體應用研究室博士王奇等人,采用低溫等離子體技術成功制備出分散性良好的石墨烯鉑納米復合材料。相關成果日前已發表在應用物理領域的頂級期刊《應用物理快報》上。 石墨烯鉑復合材料可以提高燃料電池的反應效率,在航天航空、能源、環境等領域有著極為廣
合肥研究院高分散超細鉑/還原石墨烯復合材料獲進展
隨著不可再生能源的急劇消耗以及眾多環境污染問題的出現,人類對“綠色”能源的需求也更加迫切。作為眾多“綠色”能源的一種,直接甲醇燃料電池(DMFC)可以將甲醇和氧化劑的化學能直接轉化成電能。由于其燃料廉價、結構簡單、能量密度和轉換率高及近乎零污染等優點,這種燃料電池吸引了眾多研究者的關注。目前,直
石墨烯-鉑復合材料制備方面取得新進展
石墨烯-鉑復合材料具有很強的催化活性,可以提高燃料電池的反應效率,在航天航空、能源、環境等領域有著極為廣泛的應用前景。傳統化學手段制備的石墨烯復合材料需要用到化學試劑來還原制備單質鉑,并且常使用表面活性劑以提高納米金屬顆粒的分散性,這樣盡管有效果但會影響到材料的性質,且制備過程冗長,還會污染環境
高分散超細鉑/二氧化錫/還原石墨烯復合催化材料獲進展
近期,固體所梁長浩研究員課題組在高分散超細鉑/二氧化錫/還原石墨烯復合材料(Pt/SnO2/rGO)研究方面取得新的進展,相關工作已在Nano Energy上發表(Nano Energy, 2016, 26, 699-707)。 燃料電池作為一種高效、安全、清潔的化學能源而受到眾多研究者的廣泛
石墨烯復合材料的未來
石墨烯以其優異的性能和獨特的二維結構成為材料領域研究熱點。6月2日下午,石墨烯公益沙龍暨青年科學家快樂足球邀請賽在惠山經濟開發區科創中心工會創業中心成功舉辦,來自國內各大高校及科研院所等單位的青年科學家、石墨烯行業的企業家、創投基金負責人齊聚一堂,參與了石墨烯沙龍交流及球場競技,活動氣氛熱烈。
石墨烯納米復合材料可提升電池性能
據美國物理學家組織網7月27日報道,美國科學家制造出了一種由石墨烯和錫層疊在一起組成的納米復合材料,這種可用來制造大容量能源存儲設備的輕質新材料可用于鋰離子電池中,其“三明治”結構也有助于提升電池的性能。相關研究發表在最新一期《能源和環境科學》雜志上。 該研究的領導者、勞倫斯
我國石墨烯纖維復合材料產業前景廣闊
“自2010年,英國曼徹斯特大學物理學家安德烈·海姆和康斯坦丁·諾沃肖洛夫教授捧起諾貝爾物理學獎那一刻起,石墨烯一舉成為舉世矚目的新材料。” 目前,歐洲、美國、日本、中國等眾多國家,都把石墨烯列為本世紀最重要的新材料進行研究和開發,并已在新能源、電子、新材料等方面取得重要進展和初步應用效果,
我國合成迄今最大長徑比超細鉑納米線
近日,燕山大學環境與化學工程學院教授高發明課題組利用胰島素纖維的線性結構以及特定的活性基團誘導合成了直徑僅為1.8nm、長徑比大于104的超細、超長鉑納米線。這是國際上首次合成如此大數值長徑比的超細鉑納米線。相關成果日前發表于《美國化學會志》。 金屬鉑性能優異,用途廣泛,但其
合肥研究院純單質鎳/石墨烯復合材料研究取得進展
近期,中國科學院合肥物質科學研究院固體物理研究所液相環境激光制備與加工實驗室在純單質鎳/石墨烯復合材料的制備及其甲醇氧化電催化研究中取得新進展。 納米鎳基催化劑因其高的催化活性和低成本而被研究者們廣泛認識,并已成為重要的非鉑基催化劑。通過降低鎳基催化劑的尺寸來增加鎳的利用率,是提高鎳基催化劑效
石墨烯復合材料固相微萃取涂層的制備
石墨烯復合材料固相微萃取涂層的制備及其對水樣中六六六殘留的測定 摘要: 該文制備了石墨烯復合材料并將其包覆于銅絲上作為萃取纖維,利用固相微萃取/氣相色譜- 電子捕獲檢測器( GC - ECD) 技術,建立了環境水樣中有機氯農藥六六六殘留的直接測定方法。優化了萃取時間、萃取溫度、pH 值及離子強度