<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 石墨烯/氮化硼異質結構的熱致旋轉現象觀測研究獲進展

    二維材料范德華異質結構近期在二維材料和物理研究領域引起了廣泛的研究興趣。不同的二維材料通過范德華力結合在一起可以形成不同類型的異質結構,往往可以表現出單種二維材料所不具備的特性。這種人工異質結的出現為研究者有目的性地設計不同結構以及器件提供了極大的空間。例如垂直隧穿晶體管,二維材料激光器等等。在構建二維材料異質結的時候,不同材料之間的相對轉角是一個非常重要的參數。它會對異質結的能帶產生顯著的調控,從而影響其電學、光學等特性。石墨烯/氮化硼是其中一個最典型的代表。石墨烯和六方氮化硼結合在一起后,石墨烯表面會出現摩爾條紋, 摩爾條紋的周期與二者之間的轉角密切相關。這種摩爾條紋可以看做氮化硼襯底對石墨烯的周期勢調控,從而導致石墨烯能帶的重構,例如產生自相似的超晶格子帶,打開石墨烯的能隙等。最近幾年,中國科學院物理研究所研究員張廣宇領導的N07組和國際同行利用輸運、光學以及掃描隧道顯微鏡等研究手段圍繞石墨烯/六方氮化硼摩爾超晶格體系......閱讀全文

    物理所等轉角二硫化鉬石墨烯異質結的垂直電導研究進展

    近年來,二維材料以其優異的電學、光學以及力學性質被廣泛關注和研究。得益于二維材料層狀結構及弱層間范德華相互作用,不同的二維材料可以像樂高積木一樣相互組合形成各種二維材料異質結。正如樂高積木有無窮種搭建方式,二維材料也可以組合出具有不同性能的二維材料異質結,這為器件應用和諸多基礎物理現象研究提供了一個

    化學所高質量石墨烯和氮化硼的制備及性能研究獲進展

      高質量二維原子晶體的可控制備是基礎研究和應用開發的前提,目前是迫切需要優先研究的重大基礎科學問題之一。可控制備的最終目的是獲得大面積、單層和單晶結構的二維原子晶體。   在中國科學院、科技部和國家自然科學基金委的大力支持下,中國科學院化學研究所有機固體重點實驗室的相關科研人員最近在石

    石墨烯復合材料的未來

      石墨烯以其優異的性能和獨特的二維結構成為材料領域研究熱點。6月2日下午,石墨烯公益沙龍暨青年科學家快樂足球邀請賽在惠山經濟開發區科創中心工會創業中心成功舉辦,來自國內各大高校及科研院所等單位的青年科學家、石墨烯行業的企業家、創投基金負責人齊聚一堂,參與了石墨烯沙龍交流及球場競技,活動氣氛熱烈。 

    他們在實驗室“種”出世界最長石墨烯納米帶

      自2004年英國科學家用膠帶從石墨層上“撕”出石墨烯并在6年后獲得諾貝爾物理學獎以來,這種二維材料已成為備受矚目的“新材料之王”。  石墨烯具有超高的載流子遷移率,導電性能優異,是未來高性能電子器件與芯片的理想候選材料。然而,其“零帶隙”特征卻成為限制其應用的“致命缺陷”。相比之下,寬度小于十納

    王浩敏團隊制備成功石墨烯納米帶

       3月10日,記者從中科院上海微系統所獲悉,該所信息功能材料國家重點實驗室王浩敏團隊在國際上首次通過模板法在六角氮化硼溝槽中實現石墨烯納米帶可控生長,成功打開石墨烯帶隙,并在室溫下驗證了其優良的電學性能,為研發石墨烯數字電路提供了一種可能的技術路徑。3月9日,相關研究成果發表于《自然—通訊》雜志

    王浩敏團隊制備成功石墨烯納米帶

       3月10日,記者從中科院上海微系統所獲悉,該所信息功能材料國家重點實驗室王浩敏團隊在國際上首次通過模板法在六角氮化硼溝槽中實現石墨烯納米帶可控生長,成功打開石墨烯帶隙,并在室溫下驗證了其優良的電學性能,為研發石墨烯數字電路提供了一種可能的技術路徑。3月9日,相關研究成果發表于《自然—通訊》雜志

    他們在實驗室“種”出世界最長石墨烯納米帶

    原文地址:http://news.sciencenet.cn/htmlnews/2024/4/521279.shtm自2004年英國科學家用膠帶從石墨層上“撕”出石墨烯并在6年后獲得諾貝爾物理學獎以來,這種二維材料已成為備受矚目的“新材料之王”。石墨烯具有超高的載流子遷移率,導電性能優異,是未來高性

    美研究發現添加人造邊緣可讓二硫化鉬原子層整齊生長

      據物理學家組織網近日報道,美國萊斯大學和橡樹嶺國家實驗室(ORNL)的科學家合作開發出一種新方法,可以控制二硫化鉬(MDS)原子層整齊一致地生長,借此朝制造二維電子設備前進了一步。相關研究發表在本周出版的《自然·材料學》雜志上。   半導體二硫化鉬是制造功能性二維電子元件所需的三種材料中的一種

    我國科學家創造出無摩擦力的冰

    “我們發現如果把冰結在石墨烯等特定材料上,只讓其生長一兩個分子層,我們稱其為二維冰,那么冰與材料表面之間的摩擦力就會消失。”6月14日,北京大學物理學院量子材料科學中心、北京懷柔綜合性國家科學中心輕元素量子材料交叉平臺教授江穎告訴科技日報記者。相關研究成果當日發表于國際頂級學術期刊《科學》。“人們很

    完善石墨烯基材料測試標準體系-劃出石墨烯的“及格線”

      日前,由中科院山西煤炭化學研究所(簡稱山西煤化所)獨立提出并完成、歷時4年修改完善的燃燒法測量石墨烯基材料灰分含量國際標準,經中國、加拿大、韓國、德國等多國科學家審核后正式發布。  該方法完善了石墨烯基材料測試標準體系,顯著提高了石墨烯基材料灰分測試效率和分析結果的準確性,得到國內外科學家和產、

    《自然》刊發!南航以通訊作者單位發布最新成果

    原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505141.shtm2023年7月19日,國際著名學術期刊《Nature》發表了南京航空航天大學國際前沿科學研究院、航空學院郭萬林院士團隊殷俊教授與英國曼徹斯特大學諾貝爾獎獲得者A. Geim團隊A. M

    mK極低溫納米精度位移臺在二維材料、石墨烯等領域的前...

    mK極低溫納米精度位移臺在二維材料、石墨烯等領域的前沿應用進展nature:二維磁性材料的磁結構與相關特性研究關鍵詞:二維鐵磁材料;極低溫納米精度位移臺;反鐵磁態;二次諧波??? 近年來,二維磁性材料在國際上成為備受關注的研究熱點。近日,中國與美國的研究團隊合作,在二維磁性材料雙層三碘化鉻中觀測到源

    石墨烯超級防腐涂層成就新型海洋設備

      海洋腐蝕問題是導致海上設備失效的主要原因之一,也是全球腐蝕的難題。二維材料,特別是石墨烯的發現為開發新型海洋設備重防腐涂層提供了新的思路。石墨烯具有單原子層結構及分子不可滲透性,被認為是最薄的防護材料。然而,人工制備的石墨烯容易再團聚,無法充分發揮石墨烯單片層的優異特性。此外,石墨烯是導電碳材料

    科研人員發現近室溫制備范德華塊體材料新方法

    原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519360.shtm范德華塊體材料,如六方氮化硼和石墨,在導熱和高溫結構材料等領域有重要應用。然而這類范德華塊體材料通常需要在高于1000攝氏度的高溫下燒結制備、能耗巨大。3月15日,清華大學深圳國際研究

    科研人員發現近室溫制備范德華塊體材料新方法

    范德華塊體材料,如六方氮化硼和石墨,在導熱和高溫結構材料等領域有重要應用。然而這類范德華塊體材料通常需要在高于1000攝氏度的高溫下燒結制備、能耗巨大。3月15日,清華大學深圳國際研究生院與中國科學院深圳先進技術研究院、中國科學院金屬研究所、深圳理工大學(籌)合作團隊的成果發表于《自然—材料》。研究

    研究揭示層間拖拽輸運中的量子干涉效應

      中國科學技術大學教授曾長淦、副研究員李林研究團隊與北京大學教授馮濟課題組合作,通過構筑氮化硼絕緣層間隔的多種石墨烯基電雙層結構,首次揭示了在層間拖拽這一復雜的多粒子輸運過程中存在顯著的量子干涉效應。相關研究成果日前在線發表于《自然-通訊》。  量子干涉效應是量子力學中波粒二象性的直接體現。在固體

    石墨烯阻燃新材料打破國際壟斷

      記者日前獲悉,由無錫興達泡塑新材料股份有限公司與常州第六元素材料科技股份有限公司,合作研發的石墨烯阻燃型EPS新材料成功實現產業化。  據了解,該材料在我國的應用也呈上升趨勢,但我國建筑外保溫市場阻燃型石墨EPS市場被國外品牌壟斷。為打破國外對新型阻燃型EPS新材料的壟斷,促進我國EPS材料的轉

    石墨烯:奇跡材料的路與遠方

      "奇跡材料"的路與遠方  作為新一代碳納米材料,石墨烯具有優異的理化性質,是電子、光學、磁學、生物醫學、儲能等領域最具應用潛力的前沿材料之一。從2004年在實驗室被發現至今,石墨烯獲得了廣泛的關注和源源不斷的資金與研發投入,我國對石墨烯材料的研究進程位居全球前列,各級政府也給予了較大支持。近年來

    石墨烯材料電池負極的技術缺陷

    1)制備的單層石墨烯片層極易堆積,比表面積的減少使其喪失了部分高儲鋰空間;2)首次庫倫效率低,一般低于 70%。由于大比表面積和豐富的官能團,循環過程中電解質會在石墨烯表面發生分解,形成SEI 膜;同時,碳材料表面殘余的含氧基團與鋰離子發生不可逆副反應,造成可逆容量的進一步下降;3)初期容量衰減快;

    擊敗石墨烯-新材料之王將易主?

      2019年的Nature、Nature Chemistry、JACS等頂刊中,新型納米材料表現優異,其中金屬有機骨架材料(MOF)、石墨炔(GDY)、金屬碳化物/氮化物(MXene)和黑磷(BP)材料作為當中的佼佼者,得到了越來越多的關注。  翻紅明星  MOF  MOF是Metal Organ

    “神奇材料”石墨烯“聯姻”硅基技術

      據物理學家組織網7月10日(北京時間)報道,奧地利、德國和俄羅斯的科學家們合作研發出一種新方法,可以很好地讓“神奇材料”石墨烯同現有占主流的硅基技術“聯姻”,制造出在半導體設備等領域廣泛運用的石墨烯-硅化物。相關研究發表在英國自然集團旗下的《科學報告》雜志上。   石墨烯是從石墨材料中剝離出來

    二維錫烯拓撲材料研究取得進展

      近日,中國科學技術大學合肥微尺度物質科學國家研究中心教授王兵和副教授趙愛迪研究團隊與清華大學助理教授徐勇、教授段文暉以及美國斯坦福大學教授張首晟合作,成功制備出具有純平蜂窩結構的單層錫烯,并結合第一性原理計算證實了其存在拓撲能帶反轉及拓撲邊界態。相關研究成果11月5日在線發表在《自然-材料》(N

    二維錫烯拓撲材料研究取得進展

    近日,中國科學技術大學合肥微尺度物質科學國家研究中心教授王兵和副教授趙愛迪研究團隊與清華大學助理教授徐勇、教授段文暉以及美國斯坦福大學教授張首晟合作,成功制備出具有純平蜂窩結構的單層錫烯,并結合第一性原理計算證實了其存在拓撲能帶反轉及拓撲邊界態。相關研究成果11月5日在線發表在《自然-材料》(Nat

    二維原子晶體首現四角形結構

      中國南京航空航天大學納米科學研究所博士張助華、教授郭萬林與美國萊斯大學機械工程系講習教授Boris I. Yakobson合作,通過大規模基于第一原理的原子結構搜索,發現單原子層碳化鈦(TiC)二維原子晶體因為其獨特的原子雜化機制而具有高度穩定的四角形結構,有關這一全新的二維原子晶

    上海微系統所等實現六角氮化硼表面石墨烯邊界調控

      近日,《納米尺度》(Nanoscale)雜志以《六角氮化硼表面石墨烯晶疇邊界調控》(Edge Control of Graphene Domains Grown on Hexagonal Boron Nitride)為題,在線刊登了中國科學院上海微系統與信息技術研究所信息功能材料國家重點實驗室陳

    “二維/三維石墨烯材料與光電器件可控制備”課題技術驗收

      石墨烯具有優異的光學和電學性質,其高光學透過率和超高載流子遷移率等特性及在新型光電器件中具有很好的應用前景。  近日,由重慶墨希科技有限公司、中國科學院重慶綠色智能技術研究院、重慶萊寶科技有限公司和重慶大學等單位共同承擔的863計劃“二維/三維石墨烯材料與光電器件的可控制備及示范應用(2015A

    新型單元素二維原子晶體材料黑磷或將成“第二個石墨烯”

      科技日報訊 (記者馬愛平)記者近日從深圳大學獲悉,由深圳大學——新加坡國立大學光電協同創新中心教授張晗帶領的深圳市孔雀創新團隊首次研發了基于黑磷的光纖鎖模激光器,得到了超短脈沖激光的輸出信號。  近年來,在石墨烯產業蓬勃發展之際,另一種新型單元素二維原子晶體材料——黑磷被發現。與石墨烯類似,黑磷

    原子力顯微鏡有機晶體形貌與結構表征高分辨率解決方案

    本文用牛津儀器Asylum Research首次實現以原子力顯微鏡對二維分子晶體(C8-BTBT)材料形貌與結構進行了納米級表征,并將成果發表于Nature期刊上。 1 介紹 有機晶體是半導體材料領域的一個重要分支,已經廣泛應用于太陽能電池、顯示器等領域。晶體內部原子或分子有規則的排列

    淺談石墨烯四大應用領域-“石墨烯+”成材料領域發展新趨勢

      工信部、發改委和科技部在前期發布《發關于加快石墨烯產業創新發展的若干意見》,明確了石墨烯未來先導產業的地位,“石墨烯+”戰略有望提升中國制造業在全球的競爭力,石墨烯同下游應用產業的結合將提供豐富的投資機會,因此我們將發布石墨烯行業系列研究報告,梳理相關投資機會。第一篇石墨烯報告主要梳理了石墨烯的

    石墨烯神奇材料-為將來把“電”充滿

       分析測試百科網訊 石墨烯作為獨具特色的新材料多次引起人們的關注,成為這個國內最大規模、最具影響力的“明星”材料。石墨烯到底有哪些神奇之處,能為人們帶來什么驚喜?小編匯集了一些專家的見解,整理如下:圖片來源網絡   人類正行進在以硅為主要物質載體的信息時代,下一個量子時代,石墨烯很可能嶄露頭角 

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频