基本原理物理原理入射電子束和物質作用,可以激發出原子的內層電子形成空穴。外層電子填充空穴向內層躍遷過程中所釋放的能量,可能以X光的形式放出,即產生特征X射線,也可能又使核外另一電子激發成為自由電子,這種自由電子就是俄歇電子。俄歇電子和X射線產額入射電子束和物質作用,可以激發出原子的內層電子。外層電子向內層躍遷過程中所釋放的能量,可能以X光的形式放出,即產生特征X射線,也可能又使核外另一電子激發成為自由電子,這種自由電子就是俄歇電子[1] 。對于一個原子來說,激發態原子在釋放能量時只能進行一種發射:特征X射線或俄歇電子。原子序數大的元素,特征X射線的發射幾率較大,原子序數小的元素,俄歇電子發射幾率較大,當原子序數為33時,兩種發射幾率大致相等。因此,俄歇電子能譜適用于輕元素的分析。如果電子束將某原子K層電子激發為自由電子,L層電子躍遷到K層,釋放的能量又將L層的另一個電子激發為俄歇電子,這個俄歇電子就稱為KLL俄歇電子。......閱讀全文
掃描電鏡(SEM)是介于透射電鏡和光學顯微鏡之間的一種微觀形貌觀察手段,可直接利用樣品表面材料的物質性能進行微觀成像。圖片來源于網絡 掃描電鏡的優點: ①有較高的放大倍數,20-20萬倍之間連續可調; ②有很大的景深,視野大,成像富有立體感,可直接觀察各種試樣凹凸不平表面的細微結構;③試樣
掃描電鏡(SEM)是介于透射電鏡和光學顯微鏡之間的一種微觀形貌觀察手段,可直接利用樣品表面材料的物質性能進行微觀成像。圖片來源于網絡掃描電鏡的優點①有較高的放大倍數,20-20萬倍之間連續可調;②有很大的景深,視野大,成像富有立體感,可直接觀察各種試樣凹凸不平表面的細微結構;③試樣制備簡單。影響掃描
掃描電子顯微鏡,是自上世紀60年代作為商用電鏡面世以來迅速發展起來的一種新型的電子光學儀器,被廣泛地應用于化學、生物、醫學、冶金、材料、半導體制造、微電路檢查等各個研究領域和工業部門。如圖1所示,是掃描電子顯微鏡的外觀圖。特點制樣簡單、放大倍數可調范圍寬、圖像的分辨率高、景深大、保真度高、有真實的三
46個知識點掃盲 1. 光學顯微鏡以可見光為介質,電子顯微鏡以電子束為介質,由于電子束波長遠較可見光小,故電子顯微鏡分辨率遠比光學顯微鏡高。光學顯微鏡放大倍率最高只有約1500倍,掃描式顯微鏡可放大到10000倍以上。 2. 根據de Broglie波動理論,電子的波長僅與加速電壓有關:
1. 光學顯微鏡以可見光為介質,電子顯微鏡以電子束為介質,由于電子束波長遠較可見光小,故電子顯微鏡分辨率遠比光學顯微鏡高。光學顯微鏡放大倍率最高只有約1500倍,掃描式顯微鏡可放大到10000倍以上。 2. 根據de Broglie波動理論,電子的波長僅與加速電壓有關: λe=h / mv
1. 光學顯微鏡以可見光為介質,電子顯微鏡以電子束為介質,由于電子束波長遠較可見光小,故電子顯微鏡分辨率遠比光學顯微鏡高。光學顯微鏡放大倍率高只有約1500倍,掃描式顯微鏡可放大到10000倍以上。 2. 根據de Broglie波動理論,電子的波長僅與加速電壓有關: λe=h / mv=
在材料領域中,掃描電鏡技術發揮著極其重要的作用,利用掃描電鏡可以直接研究晶體缺陷及其產生過程,可以觀察金屬材料內部原子的集結方式和它們的真實邊界,也可以觀察在不同條件下邊界移動的方式,還可以檢查晶體在表面機械加工中引起的損傷和輻射損傷等。 掃描電鏡的結構及主要性能 掃描電鏡可粗略分為鏡體和電
在材料領域中,掃描電鏡技術發揮著極其重要的作用,利用掃描電鏡可以直接研究晶體缺陷及其產生過程,可以觀察金屬材料內部原子的集結方式和它們的真實邊界,也可以觀察在不同條件下邊界移動的方式,還可以檢查晶體在表面機械加工中引起的損傷和輻射損傷等。掃描電鏡的結構及主要性能 掃描電鏡可粗略分為鏡體和電源電路
1. 光學顯微鏡以可見光為介質,電子顯微鏡以電子束為介質,由于電子束波長遠較可見光小,故電子顯微鏡分辨率遠比光學顯微鏡高。光學顯微鏡放大倍率最高只有約1500倍,掃描式顯微鏡可放大到10000倍以上。2. 根據de Broglie波動理論,電子的波長僅與加速電壓有關:λe=h / mv= h / (
入射電子束和物質作用,可以激發出原子的內層電子形成空穴。外層電子填充空穴向內層躍遷過程中所釋放的能量,可能以X光的形式放出,即產生特征X射線,也可能又使核外另一電子激發成為自由電子,這種自由電子就是俄歇電子。入射電子束和物質作用,可以激發出原子的內層電子。外層電子向內層躍遷過程中所釋放的能量,可能以
結構及工作原理 由于透射電鏡是TE進行成像的,這就要求樣品的厚度必須保證在電子束可穿透的尺寸范圍內。為此需要通過各種較為繁瑣的樣品制備手段將大尺寸樣品轉變到透射電鏡可以接受的程度。 能否直接利用樣品表面材料的物質性能進行微觀成像,成為科學家追求的目標。 經過努力,這種想法已成為現實-----掃
電子顯微鏡 電子顯微鏡是根據電子光學原理,用電子束和電子透鏡代替光束和光學透鏡,使物質的細微結構在非常高的放大倍數下成像的儀器。 電子顯微鏡的分辨能力以它所能分辨的相鄰兩點的最小間距來表示。20世紀70年代,透射式電子顯微鏡的分辨率約為0.3納米(人眼的分辨本領約為0.1毫米)。現在電子顯微
拉曼光譜的原理及應用 拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的
掃描電子顯微鏡主要由電子光學系統、信號收集處理系統、真空系統、圖像處理顯示和記錄系統、樣品室樣品臺、電源系統和計算機控制系統等組成。第一節 電子光學系統電子光學系統主要是給掃描電鏡提供一定能量可控的并且有足夠強度的,束斑大小可調節的,掃描范圍可根據需要選擇的,形狀完美對稱的,并且穩定的電
掃描電子顯微鏡主要由電子光學系統、信號收集處理系統、真空系統、圖像處理顯示和記錄系統、樣品室樣品臺、電源系統和計算機控制系統等組成。 電子光學系統 電子光學系統主要是給掃描電鏡提供一定能量可控的并且有足夠強度的,束斑大小可調節的,掃描范圍可根據需要選擇的,形狀完美對稱的,并且穩定的電子束。 電
分辨能力是日立透射電子顯微鏡的重要指標,它與透過樣品的電子束入射錐角和波長有關。可見光的波長約為300~700納米,而電子束的波長與加速電壓有關。當加速電壓為50~100千伏時,電子束波長約為0.0053~0.0037納米。由于電子束的波長遠遠小于可見光的波長,所以即使電子束的錐角僅為光學顯微鏡的
俄歇能譜儀包括電子光學系統、電子能量分析器、樣品安放系統、離子槍、超高真空系統。以下分別進行介紹。電子光學系統電子光學系統主要由電子激發源(熱陰極電子槍)、電子束聚焦(電磁透鏡)和偏轉系統(偏轉線圈)組成。電子光學系統的主要指標是入射電子束能量,束流強度和束直徑三個指標。其中AES分析的最小區域基本
一種金屬或合金的性能取決于其本身的兩個屬性:一個是它的化學成分,另一個是它內部的組織結構。所以,對金屬材料的成分和組織結構進行精確表征是金屬材料研究的基本要求,也是實現性能控制的前提。材料分析的內容主要包括形貌分析、物相分析、成分分析、熱性能分析、電性能分析等。本文就金屬材料的形貌分析、物相分析
元素分析的基礎 X射線的產生當電子射入物質后,從物質表面會發射出各種電子、光子及X射線等電磁波。如圖49所示,由于入射電子的作用,內層電子處于激發態,外層電子向內躍遷填補有空位的軌道時,會產生等同于能量差的X射線,這就是特征X射線。 由于X射線具有元素特有的能量(波長),通過對X
數碼顯微鏡"實際上就是在光學顯微鏡的基礎上加了一個數碼成像裝置,可以將顯微鏡所成的像,在電腦屏幕上直接顯示出來,其基礎還是光學顯微鏡,和電子顯微鏡的成像原理是由根本區別的。在這里,我們要區別分辨率和放大倍數的問題。細微物體在放大成像時,其高分辨率取決于反射的光波的波長,波長越短,分辨率就越
徠卡數碼顯微鏡與光學顯微鏡主要有以下幾個方面的區別: 1、照明源不同。電鏡所用的照明源是電子槍發出的電子流,而光鏡的照明源是可見光(日光或燈光),由于電子流的波長遠短于光波波長,故電鏡的放大及分辨率顯著地高于光鏡。 2、透鏡不同。電鏡
"數碼顯微鏡"實際上就是在光學顯微鏡的基礎上加了一個數碼成像裝置,可以將顯微鏡所成的像,在電腦屏幕上直接顯示出來,其基礎還是光學顯微鏡,和電子顯微鏡的成像原理是由根本區別的。在這里,我們要區別分辨率和放大倍數的問題。細微物體在放大成像時,其最高分辨率取決于反射的光波的波長,波長越
示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖像,便于人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在涂有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描
電子顯微鏡與光學顯微鏡的區別電子顯微鏡是以電子束為照明源,通過電子流對樣品的透射或反射及電磁透鏡的多級放大后在熒光屏上成像的大型儀器,電子顯微鏡由電子流代替可見光,由磁場代替透鏡,讓電子的運動代替,是利用了波長比普通可見光短得多的X射線成像,具備很高的分辨率。而光學顯微鏡則是利用可見光照明,將微小物
電子顯微鏡是以電子束為照明源,通過電子流對樣品的透射或反射及電磁透鏡的多級放大后在熒光屏上成像的大型儀器。光學顯微鏡則是利用可見光照明,將微小物體形成放大影像的光學儀器。電子顯微鏡與光學顯微鏡主要有以下幾個方面的區別: 1、照明源不同。電鏡所用的照明源是電子槍發出的電子流,而光鏡的照明源是
電子顯微鏡是以電子束為照明源,通過電子流對樣品的透射或反射及電磁透鏡的多級放大后在熒光屏上成像的大型儀器,電子顯微鏡由電子流代替可見光,由磁場代替透鏡,讓電子的運動代替,是利用了波長比普通可見光短得多的X射線成像,具備很高的分辨率。而光學顯微鏡則是利用可見光照明,將微小物體形成放大影像的光學儀器。概
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 19.0px; font: 13.0px 'Helvetica Neue'}電子顯微鏡是以電子束為照明源,通過電子流對樣品的透射或反射及電磁透鏡的多級放大后在熒光屏上成像的大型儀器。光學顯微鏡則是
目前,不僅有能放大千余倍的光學顯微鏡,而且有放大幾十萬倍的電子顯微鏡,使我們對生物體的生命活動規律有了更進一步的認識。在普通中學生物教學大綱中規定的實驗中,大部分要通過顯微鏡來完成,因此,顯微鏡性能的好壞是做好觀察實驗的關鍵。 顯微鏡是一種精密的光學儀器,已
1 紫外吸收光譜 UV 分析原理:吸收紫外光能量,引起分子中電子能級的躍遷 譜圖的表示方法:相對吸收光能量隨吸收光波長的變化 提供的信息:吸收峰的位置、強度和形狀,提供分子中不同電子結構的信息 2 熒光
熱差分析 DTA 分析原理 :樣品與參比物處于同一控溫環境中,由于二者導熱系數不同產生溫差,記錄溫度隨環境溫度或時間的變化 譜圖的表示方法 :溫差隨環境溫度或時間的變化曲線 提供的信息 :提供聚合物熱轉變溫度及各種熱效應的信息 示差掃描量熱分析 DSC