化學所制出迄今效率最高的反向結構聚合物太陽能電池
聚合物太陽能電池一般由共軛聚合物給體和富勒烯衍生物受體的共混膜夾在ITO透明正極和金屬負極之間所組成,具有結構和制備過程簡單、成本低、重量輕、可制備成柔性器件等突出優點,近年來成為國內外研究熱點。傳統器件結構使用透明導電聚合物PEDOT:PSS修飾ITO電極作為正極、低功函數活潑金屬作為負極。PEDOT:PSS修飾層由酸性PEDOT:PSS水溶液旋涂在ITO玻璃上,酸性PEDOT:PSS對ITO具有腐蝕作用,同時器件頂部的活潑金屬負極極易與環境中的水氧發生反應,這些嚴重影響器件的穩定性和工作壽命。 近年來興起的反向結構聚合物太陽能電池使用低功函數材料修飾ITO電極作為負極、高功函數穩定的頂部電極作為正極,大大提高了器件的穩定性。但是,當前反向結構聚合物太陽能電池使用的負極修飾層材料主要是ZnO或TiO2納晶,它們需要高溫(>200oC)熱處理才能具有較好的性能,這不適合在大面積柔性電極上的應用。因此,開發廉價、可......閱讀全文
化學所制出迄今效率最高的反向結構聚合物太陽能電池
聚合物太陽能電池一般由共軛聚合物給體和富勒烯衍生物受體的共混膜夾在ITO透明正極和金屬負極之間所組成,具有結構和制備過程簡單、成本低、重量輕、可制備成柔性器件等突出優點,近年來成為國內外研究熱點。傳統器件結構使用透明導電聚合物PEDOT:PSS修飾ITO電極作為正極、低功函數活潑金屬作為負極。P
改變聚合物結構可提高太陽能電池效率
據物理學家組織網近日報道,日本科學家發現,改變聚合物的結構,有望顯著提高由其制成的太陽能電池的光電轉化效率,最新研究將有助于科學家研制出轉化效率更高的有機(或無機)聚合物太陽能電池。 基于有機聚合物的太陽能電池非常重要,因為與傳統的無機太陽能電池中使用的聚合物相比,有機聚合物便宜且容易處理
噻吩環助力厚膜聚合物太陽能電池
有機太陽能電池作為一種非常具有前景的可再生能源轉換技術,受到了學術界和工業界的廣泛關注。伴隨著新型材料的制備和應用、給受體形貌控制、界面改性和器件工程的提高,有機太陽能電池的光電轉換效率(PCE)已經突破12%,甚至超越13%(10.1021/jacs.7b01493,10.1038/nphot
化學所在聚合物太陽能電池研究方面取得系列進展
太陽能是取之不盡用之不竭的清潔(綠色)能源,近年來隨著世界各國對環境問題的重視,將太陽能轉換成電能的太陽能電池成為各國科學界研究的熱點和產業界開發、推廣的重點。相對于無機太陽能電池,聚合物太陽能電池具有成本低、制作工藝簡單、重量輕、可制備成柔性器件等突出優點,另外共軛聚合物材料種類繁多、可設計性
熱處理控制
前面討論了冷藏和冷凍可以阻止微生物繁殖,而要殺死或滅活微生物通常是采用加熱。通常食品加工企業用于殺滅和控制微生物生長的熱處理有幾種形式;預煮 (熱燙)、巴氏消毒法、加熱殺菌或滅菌,還有熱的保持。 本部分將概述每種熱處理過程。首先介紹有關熱向食物傳遞熱的兩種主要形式。第一種是傳導傳熱,熱是緩慢地由一
探索超過16%能量轉化效率的全聚合物太陽能電池
全聚合物太陽能電池(all-PSCs)具有獨特優勢如良好的穩定性和魯棒性,因此被認為是一種有前途的光伏技術。由于缺乏有效的聚合物材料,這種類型的光伏電池在功率轉換效率(PCE)方面經歷了二十年的緩慢發展。近年來,聚合小分子受體的最新進展使其PCE達到了一個新的水平,已經有多個體系的PCE超過10
化學所在聚合物太陽能電池能量研究方面取得新突破
P3HT和ICBA的分子結構以及基于P3HT/ICBA聚合物太陽能電池的器件結構和光伏性能? 聚合物太陽能電池一般由共軛聚合物給體和富勒烯衍生物受體的共混膜夾在ITO透明正極和金屬負極之間所組成,具有結構和制備過程簡單、成本低、重量輕、可制備成柔性器件等突出優點,近年來成為國內
聚合物太陽能電池活性層微觀形貌調控方法取得進展
近年來,形貌的優化成為進一步提高聚合物太陽能電池能量轉換效率的關鍵問題,盡管二元混合溶劑(一般是主溶劑和添加劑組成)對給受體的結晶行為和相區大小的調節已取得良好的效果,但它對更精細的形貌參數,如相區純度、相區界面的調節還無能為力。 在中國科學院、科技部、國家自然科學基金委的大力
科學家開發出太陽能電池用新型聚合物材料
迄今為止,世界上80%以上的能源是通過燃燒石油、天然氣和煤產生的。首先,這會導致嚴重的環境污染;其次,人類在過去不到兩百年的時間里已消耗了經過數百萬年形成的全球石油資源可開采儲量的一半以上。目前,世界各地的科學家的主要目標集中在如何提高太陽能的光電轉換效率,卻很少有人關注太陽能電池板基體材料的
熱處理爐熱處理加熱溫度三種現象
熱處理爐熱處理加熱溫度三種現象一般過熱:熱處理加熱溫度過高或在高溫下保溫時間過長,引起奧氏體晶粒粗化稱為過熱。粗大的奧氏體晶粒會導致鋼的強韌性降低,熱處理爐脆性轉變溫度升高,增加淬火時的變形開裂傾向。而導致過熱的原因是爐溫儀表失控或混料(常為不懂工藝發生的)。過熱組織可經退火、正火或多次高溫回火后,