細胞骨架如微管、微絲等一直是生命科學研究的重點。近期Johnsson等科學家將SiR直接標記于與微管和微絲分別特異性結合的小分子docetaxel和jasplakinolide,即形成SiR-tubulin和SiR-actin,實現了在不對細胞或組織進行任何轉染或基因組修飾的條件下直接進行活細胞成像[18](圖9)。SiR-tubulin和SiR-actin仍然保留了SiR的優良特性,非常適用于STED成像(圖10)。SiR-tubulin標記人成纖維活細胞中的微管后, STED超高分辨率顯微鏡揭示了細胞質中及中心體上tubulin的定位及結構信息。在這種標記和成像方法下,細胞質中微管的粗細測量為39±10 nm, 這是目前活細胞中微管成像的最高分辨率。STED成像也清晰的揭示了中心體上的微管以9個亞復合體排布成直徑約176±10 nm的環形(圖10a,b),兩個臨近亞復合體之間的夾角成39°±13°(圖10c),這......閱讀全文
在達到今天SR技術水平的過程中,承載了許許多多研究人員辛勤勞動的汗水,也面臨著諸多亟待解決的難題。 在以上這些光學SR成像技術中有兩種技術——受激發射減損顯微鏡(stimulated emission depletion microscopy, STED)和飽和結構光學顯微鏡(saturated