然而,在活體成像過程,并不是總能保持各方面因素都達到最佳狀態,那么在這種情況下,應該從哪些方面考慮,去獲得高質量的圖片呢?北京博益偉業儀器有限公司通過對一系列的實驗結果分析后,建議:首先:構建帶有強啟動子的融合表達蛋白。這是整個活體成像的第一步,也是最重要的一步。從上面的分析可以看出,啟動子的強弱對于最終圖片的獲取影響甚大,強啟動子對熒光強度的提高,是任何只從CCD性能方面進行改進所無法比擬的。另外,值得注意的是,在進行平板預實驗時,一定要將整個的實驗過程嚴格控制,包括細胞的個數,底物的濃度以及環境的溫度等。其中,環境溫度有時會被忽視,但真正的成像是在體內進行的,如果平板實驗的溫度不準確,不處于酶和底物作用的最佳溫度,那么就可能會導致獲得結果的不準確性,造成下一步體內注射細胞的偏差,影響實驗結果。下圖是不同溫度下,同樣的細胞系,同樣的個數獲得的結果,可以看到,在溫度降低后,能檢測到的細胞個數明顯減少。而這個結果實際上并不是CCD......閱讀全文
活體動物體內光學成像(Optical in vivo Imaging)主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進
活體動物體內生物發光和熒光成像技術基礎原理與應用簡介 文章目錄:一、活體生物發光成像技術二、活體動物熒光成像技術三、生物發光成像與熒光成像的比較四、活體動物可見光成像儀器原理與操作流程活體動物體內成像技術是指應用影像學方法,對活體狀態下的生物過程進行組織、細胞和分子水平的定性和定量研究的技
1、背景和原理1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事件。
1. 背景和原理:1999年,美國哈佛大學Weissleder等人提出了分子影像學(molecular imaging)的概念——應用影像學方法,對活體狀態下的生物過程進行細胞和分子水平的定性和定量研究。傳統成像大多依賴于肉眼可見的身體、生理和代謝過程在疾病狀態下的變化,而不是了解疾病的特異性分子事
小動物活體成像 主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。利用一套非常靈敏的光學
小動物活體成像,是分子影像學的一種,主要通過生物發光(bioluminescence)與熒光(fluorescence)兩種技術來進行。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。自從1999年,美國
關于生物發光與熒光及其它技術的比較 34. 熒光檢測與生物發光檢測的優勢與劣勢比較如何? 熒光發光需要激發光,但生物體內很多物質在受到激發光激發后,也會發出熒光,產生的非特異性熒光會影響到檢測靈敏度。特別是當發光細胞深藏于組織內部,則需要較高能量的激發光源,也就會產生很強的背景噪音。作為
小動物活體熒光成像技術在國內外得到越來越的普及應用,越來越多的科研人員希望能通過該技術來長時間追蹤觀察活體動物體內腫瘤細胞的生長以及對藥物治療的反應,希望能觀察到熒光標記的多肽、抗體、小分子藥物在體內的分布和代謝情況。 與傳統技術相比,活體
小動物活體成像主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。利用一套非常靈敏的光學檢測儀器,讓研究人員能夠直
關鍵字:Nexus 128,小動物光聲成像系統,臨床應用,心血管、藥物代謝、疾病早期診斷、基因表達研究、干細胞及免疫、腫瘤生物學,腦神經生物學 光聲成像開始逐步應用到臨床患者的身上,這項技術將對臨床醫學成像,如從早期腫瘤檢測到神經學和無標記組織學研究都將產生革命性的影響。在今年夏初召開的2
光聲成像開始逐步應用到臨床患者的身上,這項技術將對臨床醫學成像,如從早期腫瘤檢測到神經學和無標記組織學研究都將產生革命性的影響。 在今年夏初召開的2012國際光學和光子學會(SPIE)歐洲光子學會議上,來自華盛頓大學(St. Louis)的光聲成像先驅科學家汪立宏在大會主題發言中傳遞出