淺析毫米波與5G之間有哪些“血肉”聯系(一)
毫米波是今年如火如荼的話題之一,原因在于毫米波使5G技術成為可能。那么,5G網絡是如何借助毫米波發展自身的呢?心懷這個疑問來看看本文吧。在本文中,將通俗易懂地向大家介紹毫米波的基本知識,并闡述毫米波與5G間的“血肉”關聯。毫米波是什么毫米波究竟是個什么東西?其實我們翻翻高中物理課本就能清楚,其本質上就是一種高頻電磁波,它是波長1-10毫米的電磁波,通常來說就是頻率在30GHz-300GHz之間的電磁波。是5G通訊中所使用的主要頻段之一。5G通訊中主要使用兩個通訊頻段,Sub-6GHz為低頻頻段,它主要使用6GHz以下頻段進行通訊。毫米波頻段則使用24GHz-100GHz的高頻毫米波進行通訊。目前5G對于毫米波的利用,大多集中在24GHz/28GHz/39GHz/60GHz幾個頻段之中。毫米波的簡單介紹到此為止。回到最初的問題,網絡速度的提升跟毫米波有什么關系?這里我們不需要提及那些生澀難懂技術,只要舉個例子分分鐘就能理解......閱讀全文
5G-mmWave毫米波頻譜
毫米波依靠超高的 mmWave 頻率的速度和容量為 5G 應用提供超強動力。 ? 毫米波 5G,也被稱為 mmWave——是下一代移動應用基礎。我們將解釋它是什么,以及在需要高容量、低延遲網絡的地區,它將如何影響 5G 網絡。 ? 下一代 5G 網絡不僅將在大范圍內提供無處不在
5G通訊關鍵之“毫米波技術解析”(二)
相比而言,4G-LTE頻段最高頻率的載波在2GHz上下,而可用頻譜帶寬只有100MHz。因此,如果使用毫米波頻段,頻譜帶寬輕輕松松就翻了10倍,傳輸速率也可得到巨大提升。5G時代,我們可以使用毫米波頻段輕輕松松用手機5G在線看藍光品質的電影,只要你不怕流量用完!各個頻段可用頻譜帶寬比較
5G網絡實現的核心技術:毫米波
如今,很多人都在說5G技術的前景,5G技術將是一個革命性的技術,對很多產業將產生變革。可是,對于很多小白而言,5G和4G技術的一個關鍵區別就是毫米波技術,這個可能是5G網絡實現的核心技術。什么是毫米波?有啥用?毫米波是指波長在毫米數量級的電磁波,其頻率大約在30GHz~300GHz之間。根據通信原理
一文帶你了解5G毫米波頻譜
毫米波依靠超高的 mmWave 頻率的速度和容量為 5G 應用提供超強動力。 ? 毫米波 5G,也被稱為 mmWave——是下一代移動應用基礎。我們將解釋它是什么,以及在需要高容量、低延遲網絡的地區,它將如何影響 5G 網絡。 ? 下一代 5G 網絡不僅將在大范圍內提供無處不在
5G毫米波無線電射頻技術概述
業界普遍認為,混合波束賦形(例如圖 1 所示)將是工作在微波和毫米波頻率的 5G 系統的首選架構。這種架構綜合運用數字(MIMO) 和模擬波束賦形來克服高路徑損耗并提高頻譜效率。如圖 1 所示,m 個數據流的組合分割到 n 條 RF 路徑上以形成自由空間中的波束,故天線元件總數為乘
5G通訊關鍵之“毫米波技術解析”(一)
第五代移動通信系統 (5th generation mobile networks,簡稱5G)離正式商用(2020年)越來越接近,這些日子華為、三星等各大廠商也紛紛發布了自己的解決方案,可謂“八仙過海,各顯神通”。 5G的一個關鍵指標是傳輸速率:按照通信行業的預期,5G應當實現比4G快
揭秘5G毫米波:3大天然缺點(一)
未來的流量需求很瘋狂,根據香農定理,毫米波有足夠的帶寬,成為5G無線的必然。 毫米波將應用于未來Small Cells和網絡回傳。有機構預測,到2019年,毫米波將替代20%的LTE回傳,大大節省昂貴的光纖網絡部署。 這幾天,各大廠家關于毫米波的好消息紛至沓來,包括華為在溫哥華完成毫
5G毫米波無線電射頻技術演進-(一)
當無線產業開始創建 5G 時,2020 年顯得那么遙遠。而現在就快到 2020 年,這無疑將是屬于 5G 的十年。新聞每天都會報道新的現場試驗和即將進行的商業 5G 部署。對于無線產業來說,這是一個非常令人興奮的時刻。目前,行業 5G 焦點主要在增強移動寬帶方面,利用中頻和高頻頻譜
發展5G網絡的關鍵技術:毫米波(二)
毫米波的特性 說了這么多,毫米波又具備哪些特性呢?從理論上講,毫米波是光波向低頻的發展與微波向高頻的延伸。由于毫米波的獨有特性,使其在傳播時不易受到自然光和熱輻射源的影響,不光是通信,其還可應用于雷達、制導等諸多領域。 說了這么多,毫米波又具備哪些特性呢?從理論上講,毫米波是光波
5G毫米波無線電射頻技術演進-(二)
? 近期最實用、最有效的波束合成方法是混合數模波束成型,它實質上是將數字預編碼和模擬波束合成結合起來,在一個空間(空間復用)中同時產生多個波束。通過將功率引導至具有窄波束的目標用戶,基站可以重用相同的頻譜,同時在給定的時隙中為多個用戶服務。雖然文獻中報道的混合波束成型有幾種 不同的方法
發展5G網絡的關鍵技術:毫米波(一)
距離2020年5G正式商用的期限,越來越近。目前,各大廠商都在加快自己在5G技術上的測試工作。記得在上周,華為與沃達豐共同完成了5G毫米波室外現場測試,實現單用戶設備20Git/s的峰值傳輸速度。不過,按照預期,最終5G的傳輸速率將可實現1Gb/s,比4G快十倍以上,要如何實現?
淺析毫米波與5G之間有哪些“血肉”聯系(一)
毫米波是今年如火如荼的話題之一,原因在于毫米波使5G技術成為可能。那么,5G網絡是如何借助毫米波發展自身的呢?心懷這個疑問來看看本文吧。在本文中,將通俗易懂地向大家介紹毫米波的基本知識,并闡述毫米波與5G間的“血肉”關聯。毫米波是什么毫米波究竟是個什么東西?其實我們翻翻高中物理課本就能清楚,
淺析毫米波與5G之間有哪些“血肉”聯系(二)
毫米波是今年如火如荼的話題之一,原因在于毫米波使5G技術成為可能。那么,5G網絡是如何借助毫米波發展自身的呢?心懷這個疑問來看看本文吧。在本文中,將通俗易懂地向大家介紹毫米波的基本知識,并闡述毫米波與5G間的“血肉”關聯。毫米波是什么毫米波究竟是個什么東西?其實我們翻翻高中物理課本就能清楚,
5G毫米波接口特性分析的挑戰及考慮因素(三)
建構圖2所示的毫米波量測系統時,必須考慮校驗的效益:◇?系統校驗亦稱為“背對背”校驗,可將發射器連接到接收器,以對齊頻率參考與系統頻率,進而取得準確的振幅、相位及抵達時間估算。◇?基頻AWG的差動IQ輸出可能具有時序、增益及正交誤差,這會對信號質量造成影響。IQ失配校驗可修正AWG輸出之同相
【淺析】一場5G毫米波引爆的頻帶“戰爭”(一)
然而,請注意28GHz頻帶并不在ITU的全球可用頻率列表上,因此仍無法確定此頻帶是否能成為5G毫米波應用的長期頻率。但基于此頻譜在美國、韓國與日本的可用性,以及美國電信業者早期現場測試的投入,28GHz無論是否成為國際標準,都可能直接成為美國的移動技術應用。韓國于2018年奧運展示5G技
【淺析】一場5G毫米波引爆的頻帶“戰爭”(一)
無線設備數量與其消耗的數據量每年都以等比級數增加——年復合成長率(CAGR)達53%。當這些無線設備創造并消耗資料時,連接這些設備的無線通信基礎設施也必須隨之演進,才能滿足成長的需求。3GPP定義三種高階5G使用案例(圖1)的目標是隨時隨地提供可用的移動寬帶數據,然而,僅僅提升4G架構網絡的頻譜
諾基亞攜DoCoMo開展90GHz毫米波頻段5G測試
據悉,諾基亞和日本電信巨頭NTT?DoCoMo日前正在測試使用極高毫米波(mmWave)頻譜的5G技術,用于提供虛擬現實(VR)和增強現實視頻等高帶寬、低延遲服務。此次測試將使用諾基亞貝爾實驗室部門的相控陣射頻芯片和天線平臺,以支持90 GHz頻段的5G傳輸。該頻段明顯高于當前大多數使用mmWave
5G毫米波接口特性分析的挑戰及考慮因素(二)
重要技術挑戰包括:◇?以大于500MHz帶寬及多通道支持,在毫米波頻率下進行信號產生及分析◇?數據擷取及儲存◇?通道參數估算◇?校驗及同步化接下來討論有助于因應這些挑戰的一些重要考慮。信號產生與分析為了滿足使用者對于5G的高帶寬需求,無線接口標準將涵蓋高達100GHz的毫米波頻率,帶寬為50
5G毫米波接口特性分析的挑戰及考慮因素(一)
5G有許多頗具挑戰性的目標——括增加網絡容量、提升峰值數據速率以及讓行動通訊服務變得更可靠。其中有些目標需要將現今效能提高10倍、100倍或1,000倍,這在現有低于6GHz的頻譜中是無法達成的。因此,研究人員必須在高達100GHz厘米波(cm)及毫米波(mmWave)頻率中研究新的無線接口
5G技術關鍵所在:解讀三種頻率毫米波
毫米波:三種頻率的故事為了服務客戶,全球各地的電信業者已在頻譜上投資了數十億美元。設定頻譜拍賣底價更突顯了頻譜這種寶貴資源的市場價值與供不應求的特性。開啟新的頻譜讓電信業者不僅能服務更多使用者,還能提供更高效能的移動寬帶數據傳輸體驗。與6GHz以下的頻譜相比,毫米波的頻譜不僅非常充裕,而且只要稍經授
Pre5G和5G:毫米波頻段能如愿工作嗎?(三)
基于這個分析,在下行鏈路方向建立一條采用 1000 米 ISD 的適用通信鏈路是可能的。但是,前幾代的無線技術都是上行鏈路功率受限的,5G 也不例外。表 4 顯示假設最大傳導設備功率為 +23 dBm 和假設采用 16 單元天線陣列客戶端設備(CPE)路由器波形因子的上行鏈路預算。根據路
Pre5G和5G:毫米波頻段能如愿工作嗎?(一)
任何下一代移動通信技術必須要提供比上一代更好的性能。例如,由于從 3G 到 4G 的過渡,理論峰值數據速率從大約 2 Mbps 跳到 150 Mbps。隨后,LTE Advanced Pro 達到了 Gbps 的峰值數據速率,最近已在演示 1.2 Gbps 的數據吞吐量1。在最近由高通和諾基
Pre5G和5G:毫米波頻段能如愿工作嗎?(二)
高頻率的挑戰從自由空間傳播損耗(FSPL)公式可見,頻率增加路徑損耗隨著增加。波長(λ)和頻率(f)通過光速(c)關聯,即:λf= c,并且隨著頻率的增加,波長會縮短。這產生兩個主要影響。首先,隨著波長的縮短,兩個天線單元之間所需的間隔(通常為λ/2)減小,這使得實際天線陣列具有多重天線單元
5G/NR--OTA-(二)
UE Placement in Test Setup (Antenna Distance between UE and Test equipment)?In order to get a repeatble, reliable?and stable measurement result, it
5G背后的故事
5月17日,工信部在2022年世界電信和信息社會日大會上發布:目前我國已建成5G基站近160萬個,成為全球首個基于獨立組網模式規模建設5G網絡的國家;5G應用涵蓋交通、醫療、教育、文旅等諸多生活領域,案例累計超過2萬個。 喜人的成績背后隱藏著一個無法否認的事實——to B領域“接地氣”的5G,
5G/NR--OTA-(三)
Why testing in Far Field ??Probably by now, you may have a question 'Why do we need to test in Far Field ?'. ?It would not be easy to get
5G/NR--OTA-(四)
???There is another reason why defining D gets difficult. It would get more difficult for UE case. In order to correctly define D, you need to hav
5G/NR--OTA-(一)
OTA (Over The Air)?OTA stands for Over The Air. In order to perform test a device with any test equipment, you need a way of connecting the device
5G,敢問路在何方-計算機專家前瞻5G時代
? 工信部日前發布的數據顯示,我國已開通5G基站69萬個,連接用戶數超過1.6億。5G商用邁出堅實步伐,加速到來的5G時代,將是怎樣的光景?又會面臨哪些挑戰? 22日至24日在京舉辦的2020中國計算機大會上,國內計算機領域的專家和企業家們圍繞5G未來發展進行了探討。除了網速更快,5G還能如何應
聯合研究在5G毫米波大規模MIMO射頻鏈路壓縮領域取得進展
近日,由中國科學院沈陽自動化研究所團隊與以色列魏茨曼科學院 (Weizmann Institute of Science) 研究團隊,聯合提出了針對多輸入多輸出 (Multiple-Input Multiple-Output, MIMO) 無線通信系統的射頻鏈路壓縮理論與算法,并搭建了相應的硬件