<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 毫米波/大規模MIMO/波束成形等,5G關鍵技術給天線設計1

    毫米波/大規模MIMO/波束成形等,5G關鍵技術給天線設計帶來了怎樣的挑戰? 如果要問一個年輕人生活中最不能缺少什么東西,我想,這個答案十之八九都是手機。手機作為現在年輕人社交、娛樂的工具,如果失去了通信能力,那就是一塊“板磚”,而手機能夠正常通信,離不開信號接收/發射組件-天線。按照業界的定義,天線是一種變換器,它把傳輸線上傳播的導行波變換成在無界媒介(通常是自由空間)中傳播的電磁波,或者進行相反的變換,也就是發射或接收電磁波。顯然,沒了天線,你手中的手機就失去了最核心的功能,隨著通信技術的不斷發展,天線設計也開始變得越來越復雜。就拿現階段最火熱的5G技術來說,它擁有比4G快十倍的傳輸速率,毋庸置疑,5G將給用戶帶來全新的體驗,但是它對天線系統也提出了新的要求。5G的關鍵技術包括毫米波、大規模MIMO、小基站技術、波束成形、非正交多址接入、信道編碼、SDN/NFV等等,這些技術能夠幫助實現高速、低時延、高容量的5G網絡,......閱讀全文

    毫米波/大規模MIMO/波束成形等,5G關鍵技術給天線設計1

    毫米波/大規模MIMO/波束成形等,5G關鍵技術給天線設計帶來了怎樣的挑戰? 如果要問一個年輕人生活中最不能缺少什么東西,我想,這個答案十之八九都是手機。手機作為現在年輕人社交、娛樂的工具,如果失去了通信能力,那就是一塊“板磚”,而手機能夠正常通信,離不開信號接收/發射組件-天線。按照業界的定

    毫米波/大規模MIMO/波束成形等,5G關鍵技術給天線設計2

    小基站技術小基站主要專注熱點區域的容量吸收和弱覆蓋區的信號增強,信號覆蓋范圍從十幾米到幾百米。小基站在在3G時代就已開始應用,以家庭基站是作為3G網絡室內覆蓋和業務分流的重要方案。在2G時代,由于宏基站覆蓋范圍較廣,室內主要采用室分系統為主,小基站應用場景相對有限。在3G時代,由于仍然以采取

    要了解5G-需要關注這6項技術(二)

      2、毫米波技術  電波傳播的特性很有趣,頻率越高(即波長越短)的電磁波,就越傾向于直線傳播,當高到紅外線和可見光以上時,就一點也不打彎了,這是個漸進的過程。    毫米波一般不用于移動通信領域,原因就是它的頻率都快接近紅外線了,信道太“直”,移動起來不容易對準。請想象一個場景,您拿著激光筆指遠處

    5G走向現實需快速的可擴展原型驗證方法

      下一代5G通信要從概念走到現實,研究人員不僅要解決前所未有的無線數據傳輸速率要求,還要找到網絡延遲和響應性的解決方案,同時將網絡容量提高一千倍。不只是這些,服務運營商還要求以更少的能耗來實現這些設想。  那么我們如何著手解決這些復雜的挑戰?答案就在原型,更具體地說,是能夠使無線研究人員測

    5G通信的殺手锏?毫米波與大規模天線陣列技術的完美...

    5G通信的殺手锏?毫米波與大規模天線陣列技術的完美配合   這是最好的時代,也是最壞的時代。生活在科技大爆發的時代里,你是否感覺到一絲慶幸? 虛擬現實、自動駕駛,無數令人血脈僨張的新型應用正在井噴式地爆發,模糊了虛擬和現實的邊界,并深刻地改變著我們觸碰和認知世界的方式。  而這,對于通信人而言

    5G仿真解決方案-|-相控陣仿真技術詳解-(一)

    天線是移動通信系統的重要組成部分,隨著移動通信技術的發展,天線形態越來越多樣化,并且技術也日趨復雜。進入5G時代,大規模MIMO、波束賦形等成為關鍵技術,促使天線向著有源化、復雜化的方向演進。天線設計方式也需要與時俱進,采用先進的仿真手段應對復雜設計需求,滿足5G時代天線不斷提高的性能要求。

    5G毫米波無線電射頻技術概述

    業界普遍認為,混合波束賦形(例如圖 1 所示)將是工作在微波和毫米波頻率的 5G 系統的首選架構。這種架構綜合運用數字(MIMO) 和模擬波束賦形來克服高路徑損耗并提高頻譜效率。如圖 1 所示,m 個數據流的組合分割到 n 條 RF 路徑上以形成自由空間中的波束,故天線元件總數為乘

    充分利用頻譜資源-波束成形如何為5G添翼?(二)

      如何實現波束成形  光束實現很簡單,只要用不透明的材料把其它方向的光遮住即可。這是因為可見光近似沿直線傳播,衍射能力很弱。然而,在無線通訊系統中,信號以衍射能力很強的電磁波的形式存在,所以無法使用生成光束的方法來實現波束成型,而必須使用其他方法。  無線通訊電磁波的信號能量在發射機由天線

    充分利用頻譜資源---波束成形如何為5G添翼?(一)

      在之前的文章(《如何實現比4G快十倍?毫米波技術是5G的關鍵》)中我們介紹了如何利用毫米波技術獲得更多的頻譜資源,接下來的問題是如何充分利用這些頻譜資源——如何讓多個用戶通訊但又互不干擾,專業術語叫做頻譜復用。    圖片來源:Phoenix  大家一定有過這樣的經驗,在一間房間里當人不

    5G設備設計與測試-(二)

    03 天線系統的革新 MIMO 和 Beamforming 是 5G 當中被談論得最多的技術,IMT2020 希望它的引入能夠帶來 100X 的數據吞吐率和 1000X 的信道容量。 ? 為此 5G? NR 標準提供物理層幀結構、新的參考信號和新的傳輸模型來支持 5G eMMB 的

    東南大學洪偉等:FITEE高通量毫米波無線通信專刊導讀

        現代信息社會中,移動通信是實現信息高效流動的基本手段。近期,第五代移動通信系統(5G)已實現大規模商用。當前,5G長期演進和第六代移動通信系統(6G)成為學術界和產業界的研究熱點。實現高通量無線通信的核心資源是頻譜,因此,毫米波(Millimeter-Wave, mmWave)頻段的開發利用

    5G時代集成電路的新趨勢:小基站

      與3G、4G相比,5G的新興技術主要是毫米波與波束成形。此外,在載波聚合、多天線輸入輸出(MIMO,Multiple Input Multiple Output)等4G技術上有了新的演進。那么,其對集成電路設計帶來了怎樣的挑戰呢?今天,我們就來預測一下5G挑戰下,集成電路的新趨勢——小基

    聯合研究在5G毫米波大規模MIMO射頻鏈路壓縮領域取得進展

      近日,由中國科學院沈陽自動化研究所團隊與以色列魏茨曼科學院 (Weizmann Institute of Science) 研究團隊,聯合提出了針對多輸入多輸出 (Multiple-Input Multiple-Output, MIMO) 無線通信系統的射頻鏈路壓縮理論與算法,并搭建了相應的硬件

    5G通訊關鍵之“毫米波技術解析”(二)

      相比而言,4G-LTE頻段最高頻率的載波在2GHz上下,而可用頻譜帶寬只有100MHz。因此,如果使用毫米波頻段,頻譜帶寬輕輕松松就翻了10倍,傳輸速率也可得到巨大提升。5G時代,我們可以使用毫米波頻段輕輕松松用手機5G在線看藍光品質的電影,只要你不怕流量用完!各個頻段可用頻譜帶寬比較 

    華為5G芯片率先完成SA/NSA全部測試的背后面臨哪些挑戰3

    因此對前端模塊(PA和LNA)、雙工器、混頻器和濾波器等RF通信組件進行特性分析將面臨著一系列新的測量挑戰。為在較大帶寬下實現更高的能效和線性度,5G PA引入了數字預失真(DPD) 等線性化技術。由于電路模型難以預測記憶效應,因此降低記憶效應唯一有效方法是測試PA并在時域信號通過D

    華為5G芯片率先完成SA/NSA全部測試的背后面臨哪些挑戰1

    7月17日,由IMT-2020(5G)推進組聯合中國通信學會與中國通信標準化協會共同主辦的2019年IMT-2020(5G)峰會正式召開。IMT-2020(5G)推進組是由工信部、發改委、科技部于2013年聯合推動成立的,致力于推動5G技術研究。根據IMT-2020(5G)推進組組長王志勤公

    基金委與芬蘭科學院合作研究項目初審結果公布

    2014年度國家自然科學基金委員會與芬蘭科學院合作研究項目初審結果的通知   2014年,國家自然科學基金委員會(NSFC)與芬蘭科學院(AF)在“5G網絡(5G Networks)”研究領域共同資助合作研究項目。經過公開征集,我委共收到項目申請10項,經初步審查并與芬方核對清單,確

    華為5G芯片率先完成SA/NSA全部測試的背后面臨哪些挑戰4

    RF-RF波束成形器測試5G波束成形設備時,如下圖中的波束成形設備,工程師需要在多個寬頻段下測試最大線性輸 出以及各個路徑的壓縮行為。他們還必須檢查衰減器的步進誤差以及每個步進的相位偏差。對于接收路徑,他們還需要對噪聲系數與頻率之間的關系進行分析。鑒于信號是雙向的,因此最簡單的測試方法是反轉

    5G毫米波無線電射頻技術演進-(二)

    ? 近期最實用、最有效的波束合成方法是混合數模波束成型,它實質上是將數字預編碼和模擬波束合成結合起來,在一個空間(空間復用)中同時產生多個波束。通過將功率引導至具有窄波束的目標用戶,基站可以重用相同的頻譜,同時在給定的時隙中為多個用戶服務。雖然文獻中報道的混合波束成型有幾種 不同的方法

    5G毫米波無線電射頻技術演進-(一)

    當無線產業開始創建 5G 時,2020 年顯得那么遙遠。而現在就快到 2020 年,這無疑將是屬于 5G 的十年。新聞每天都會報道新的現場試驗和即將進行的商業 5G 部署。對于無線產業來說,這是一個非常令人興奮的時刻。目前,行業 5G 焦點主要在增強移動寬帶方面,利用中頻和高頻頻譜

    踢開毫米波技術商用“絆腳石”

    原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454964.shtm 毫米波頻段正成為寬帶衛星通信、5G移動通信發展的“黃金”頻段,但解決毫米波無線通信傳播距離受限成為難題。科學家發現,大規模相控陣是解決上述問題的核心關鍵技術,但傳統毫米波相控陣因

    5G-Massive-MIMO的基礎知識

    1、什么是振子? ? 天線最基本的作用是進行能量傳播方式的轉換。 ? 對于基站發射的信號來說,天線把發射機的高頻振蕩電流轉換為可以在自由空間傳播的電磁波。 ? 天線往外發射電磁波是通過內部的振子來完成的。單個振子的能力有限,發射方向也難以集中,因此天線一般是由多個振子疊

    5G通信技術解讀:小基站里也有大作為

      從本質上看,小基站作為本地接入線路,能將宏無線網絡上的數據流量無縫轉移到微無線網絡上。當結合諸如宏蜂窩和Wi-Fi卸載(Wi-Fi offloading)等其他無線接入網絡技術共同使用時,小蜂窩基站就能為終端用戶帶來更佳的移動和無線覆蓋,同時幫助服務供應商更好地管理數據流量和頻譜。  小基站

    Pre5G和5G:毫米波頻段能如愿工作嗎?(二)

    高頻率的挑戰從自由空間傳播損耗(FSPL)公式可見,頻率增加路徑損耗隨著增加。波長(λ)和頻率(f)通過光速(c)關聯,即:λf= c,并且隨著頻率的增加,波長會縮短。這產生兩個主要影響。首先,隨著波長的縮短,兩個天線單元之間所需的間隔(通常為λ/2)減小,這使得實際天線陣列具有多重天線單元

    連接技術賦能5G通信新架構

    2019年6月6日,工信部向中國電信、中國移動、中國聯通、中國廣電四家企業發放5G商用牌照。中國正式進入5G商用元年。未來數據傳輸速率的提高有助于形成交互式生態系統,從而實現更智能、更高效、更互連的世界。據IHS預計, 2025年將有超過750億臺物聯網(IoT)設備接入網絡,其中大

    5G-時代,射頻前端騰飛在即

    在過去幾年中,通信廠商和硬件制造商都在積極布局5G產品,例如針對毫米波、MIMO、載波聚合等一系列軟硬件應用的開發。 ? 當前最新的5G硬件都是在配合相關標準,例如3GPPR16。雖然5G的規范和更新還在進行中,但是可以通過軟件更新的方式來滿足要求。 ? 目前已經推出的5G模組

    Massive-MIMO等商用技術能否實現5G愿景?

    5G的大規模部署預計將在2020年展開,在此之前,業界必須盡快克服諸多系統與技術挑戰,在頻譜利用與符合國際標準方面建立共識。  因此,在日前于美國德州奧斯汀舉行的NIWeek 2016上,5G仍是重要的討論議題,從一場場的專題演說、座談會、展覽現場到技術專題,幾乎都圍繞著與5G有關的頻譜效率

    【淺析】一場5G毫米波引爆的頻帶“戰爭”(一)

      無線設備數量與其消耗的數據量每年都以等比級數增加——年復合成長率(CAGR)達53%。當這些無線設備創造并消耗資料時,連接這些設備的無線通信基礎設施也必須隨之演進,才能滿足成長的需求。3GPP定義三種高階5G使用案例(圖1)的目標是隨時隨地提供可用的移動寬帶數據,然而,僅僅提升4G架構網絡的頻譜

    5G技術關鍵所在:解讀三種頻率毫米波

    毫米波:三種頻率的故事為了服務客戶,全球各地的電信業者已在頻譜上投資了數十億美元。設定頻譜拍賣底價更突顯了頻譜這種寶貴資源的市場價值與供不應求的特性。開啟新的頻譜讓電信業者不僅能服務更多使用者,還能提供更高效能的移動寬帶數據傳輸體驗。與6GHz以下的頻譜相比,毫米波的頻譜不僅非常充裕,而且只要稍經授

    毫米波,距離我們還有多遠?-(一)

    根據預測,到今年年底,國內5G基站的數量將可能達到70萬個。 ? 就在5G建設如火如荼的同時,隨著R16版本的凍結,人們逐漸將關注目光放在5G下一階段關鍵技術上。這其中,就包括號稱5G殺手锏的毫米波技術。 我們知道,3GPP定義的5G無線電頻段范圍有2個,分別為FR1頻段和F

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频