<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    RPFiberPower摻釔光纖激光器,自動解算輸出波長

    該范例為摻釔光纖激光器模型,可自動計算激光器輸出波長。因此,需定義多個信道,波長間隔為5nm,軟件將分析給定條件下哪個信道輻射激光。(兩個信道具有相似增益的情況下將出現問題)腳本程序設定了laser_wavelength()用戶自定義函數,分析輻射信道,通常此信道具有較高的輸出功率。圖3中可新奇的觀察到光纖長度的變化。對每一點需重新計算激光器波長,確實發生了變化。對于短光纖,975nm處出現激光輻射,發射截面較大。然而,對于長光纖,激光波長突然跳轉至1030nm,發射長波長激光,這主要由于975nm的激光的二次吸收(此處具有較高的吸收截面)。這一特性為三能級激光系統的顯著特征。......閱讀全文

    光纖光柵在微波光子濾波器中的應用

    光纖光柵具有體積小、質量輕、波長選擇性好、不受非線性效應影響、偏振不敏感、帶寬范圍大、附加損耗小、器件微型化、耦合性能好,可與其他光纖器件融成一體等特性;而且光纖光柵制作工藝比較成熟,易于形成規模生產,成本低,具有很好的實用性,其優越性是其他許多器件無法替代的。這使得光纖光柵以及基于光纖光柵的器件成

    基于光纖環的可調諧微波光子濾波器

    由于在微波/毫米波光纖系統中潛在的應用價值,光域上的微波信號處理技術引起了眾多研究者的興趣。比起傳統的電子微波濾波器,微波光子濾波器有著電磁環境兼容性、體積小、重量輕和較寬的工作帶寬等。鑒于光纖光柵(FBG)能以靈巧的方式構建微波光子濾波器,近年提出了許多基于FBG的微波光子濾波器結構,如不平衡馬赫

    基于光纖OPCPA的高能量1300 nm/1700 nm超快光源

    波長為1300 nm和1700 nm的激光光源在工業焊接和生物醫學等領域有著潛在的應用前景。在工業焊接方面,由于烴鍵對1700 nm波段的高吸收率,該波長激光光源可用于某些聚合物和塑料的焊接;在生物醫學方面,生物組織在1300 nm和1700 nm處具有相對較低的水吸收和較長的散

    拉曼問題匯總:拉曼光譜百問解答總結!

    拉曼光譜(Raman Spectra),是一種散射光譜。拉曼光譜分析法是基于印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。今天分享一些問答集錦,希望對你有幫助。一、測試了一些樣品,得到的

    具備精準外科應用潛質的新型?2?μm光纖激光器

      摻銩 (Tm3+) 光纖技術的進步催生了全新的 16W全光纖 調Q激光器。這種1940 nm波長的激光極易被水吸收,非常有希望用于生物組織的精準外科手術(例如,神經外科手術)和其他材料燒蝕應用領域。  Jeff Wojtkiewicz,jwojtkiewicz@nufern.com,Cohere

    微波光子雷達及關鍵技術(六)

    2.5 光模數轉換隨著數字信號處理技術的飛速發展,雷達回波的信息提取基本上都在數字域完成。作為連接模擬域回波和數字信號間的橋梁,ADC在雷達接收機中發揮著重要的作用。由于ADC孔徑抖動等原因,大的模擬帶寬和高的有效位數在完全基于電子技術的ADC中難以兼得。因此,電ADC的性能往往成為限制寬帶雷達發展

    冷鐿原子精密光譜的研究進展

    20 世紀末,科學家們利用激光實現了原子的冷卻和囚禁,并因此榮獲1997 年諾貝爾物理學獎。將冷原子應用于光譜測量可極大提高光譜的精度和分辨率,非常適合用來精確研究原子的內部結構和物理性質,檢驗基礎物理規律和探索新的物理。一方面,原子經過激光冷卻后運動速度減小,可冷卻至μK、nK甚至pK的溫度,原子

    中科院光機所高功率拉曼光纖激光器研究取得進展

      近期,中國科學院上海光學精密機械研究所空間激光信息技術研究中心馮衍研究員領銜的課題組,在高功率拉曼光纖激光器研究中取得新進展。提出了一種鐿-拉曼集成的光纖放大器結構,有效地解決了拉曼光纖激光器功率提升的主要技術瓶頸問題,在1120nm波長,首次獲得580W的單橫模線偏振拉曼光

    超快光纖激光技術之七:基于四階色散的超快光纖激光

    孤子激光器通過平衡二階色散和非線性可以直接產生亞10fs的脈沖,并且裝置相對簡單。然而,受限于孤子面積理論,孤子能量無法進一步提升。為了克服這個限制,需要激發帶啁啾的脈沖,但后續的壓縮使光路更加復雜同時效率也將降低。因此,為了保留孤子激光器的簡單和高效性,需要新的方法克服孤子激光器的功率提升

    飛秒激光器選擇指南

    Thorlabs提供多種飛秒激光器,覆蓋的波段從可見光到近紅外,是多光子顯微成像、細胞操控、微材料加工、太赫茲產生等應用的理想選擇。這里先介紹德國Menlo Systems公司的Orange系列摻???鐿光纖激光器,T-Light系列和C/M-Fiber系列激光器。Menlo Systems

    便攜式拉曼光譜儀現狀及進展

      【摘要】拉曼光譜儀廣泛應用于化學研究、高分子材料、生物醫學、藥品檢測、寶石鑒定等領域,如何進一步小型化、現場化是其未來發展的重要方向。便攜式拉曼光譜儀具有體積小、檢測方便等特點,為藥品檢測、環境檢測、安檢等實時檢測領域提供了一種無損快速檢測方法。對便攜式拉曼光譜儀的組成原理做了簡要介紹,并對國內

    包層泵浦光纖放大器,包層模式的計算 RP Fiber Power

    這是另外一個雙包層光纖放大器的范例。不同于以上范例,我們考慮所有的包層模式,并采用內置模式求解方法。根據折射率分布,纖芯數值孔徑,包層泵浦方式條件,計算模式特性。簡單起見,設定所有泵浦模式中功率均勻分布。不考慮放大的自發輻射。圖5為輸入輸出泵浦光,輸出信號的橫向強度分布。可見,剩余的泵浦光繞

    上海光機所三項國家863項目通過驗收

      4月6日,中科院上海光學精密機械研究所承擔的三項863項目:“藍光高密度光存儲材料與器件實用化關鍵技術”、“2μm輸出摻稀土離子的氟磷酸鹽玻璃光纖的研制”和“高功率光纖激光器及核心部件研究”通過科技部專家組的驗收。  周軍課題組承擔的“高功率光纖激光器及核心部件研究”項目,開展了高功率全光纖激光

    我國光纖激光相干合成獲重大成果

      近日,來自中國科學院、教育部高校和國內有關研究機構從事光電子、激光、信息、計算機應用等技術領域的多位院士、專家在長沙考察、鑒定了國防科技大學光電科學與工程學院研制的“千瓦級光纖激光相干合成試驗系統”。   專家組鑒定意見指出:“該項目在國際上首次實現光纖激光千瓦級相干合成輸出,系統輸出功率達到

    上海光機所在寬調諧光纖激光器研究方面取得進展

      近期,中國科學院上海光學精密機械研究所空間激光信息技術研究中心研究員馮衍領銜的課題組,在隨機拉曼光纖激光器研究中取得新進展。提出了一種超寬調諧的隨機拉曼激光器結構,實現了1-1.9μm的連續可調諧的隨機拉曼激光輸出,最大的輸出功率為6.2W,輸出波長為1.82μm。  2010年,Sergei

    光纖傳感器的詳詢介紹

      光纖傳感器(fibre sensor)的基本工作原理是將來自光源的光經過光纖送入調制器,使待測參數與進入調制區的光相互作用后,導致光的光學性質發生變化,成為被調制的信號光,在經過光纖送入光探測器,經解調后,獲得被測參數。光纖傳感器的優點是與傳統的各類傳感器相比,光纖傳感器用光作為敏感信息的載體,

    微波光子信號的產生(一)

    伴隨微波射頻通信技術的發展與光通信技術的日益成熟,兩者間的相互滲透成為一種需要并逐步成為可能。在現有器件條件下,在100GHz帶寬范圍內,電、光模擬信號可以很方便的自由轉換,在光域對模擬信號進行選頻濾波,放大也可以方便地實現,這就為微波光子(Microwave Photonics)技術出現提

    微波光子濾波技術概述(一)

    微波光子技術[1]是伴隨著半導體激光器、集成光學、光纖波導光學和微波單片集成電路的發展而產生的一種新興技術,是微波和光子技術結合的產物,它在射頻(RF)信號的產生、傳輸和處理等方面具有潛在的應用前景。由于射頻信號的光濾波技術具有可實現寬帶可調諧濾波的功能,因而能夠克服電子瓶頸、濾除強干擾信號等優勢。

    非線性自聚焦效應 RP Fiber Power

    首先計算了大模場面積的基模隨非線性自聚焦效應的收縮。模式求解中通常會忽略非線性效應。然而,編寫數行程序代碼,即可設置折射率分布及其非線性的變化,繼而重復計算光纖模式,直至出現自洽解。該程序也說明了光束傳輸的應用,可模擬高功率下光束分布的變化。用戶可以采用LP01(低功率)與LP11模式的疊加

    上海光機所2微米稀土摻雜激光玻璃光纖研制項目獲進展

      7月,中國科學院上海光學精密機械研究所高功率激光單元技術研發中心胡麗麗研究員、張軍杰研究員課題組承擔的科技部863項目2007AA03E441“2微米稀土摻雜激光玻璃光纖研制項目”工作取得突破性進展。該研究組利用自行研制的銩單摻雙包層碲酸鹽玻璃光纖,首次實現800nm LD泵浦下~

    儀器分類之飛秒激光器(Femtosecond Lasers)的分類

      飛秒激光器(Femtosecond Lasers)是可以發射脈沖寬度小于1ps的激光器,也就是說脈沖寬度在飛秒時間域內(1fs= 10-15s)。飛秒激光器的主要分類為:   飛秒光纖激光器   大多數情況下飛秒光纖激光器也采用被動鎖模機制,提供的典型脈沖持續時間在30到500fs ,重復頻

    關于拉曼光譜的83個問答總結(上)

      一、測試了一些樣品,得到的是Ramanshift,但是文獻是wavenumber,不知道它們之間的轉換公式是怎么樣的?激光波長632.8nm。  1. 兩者是一回事。ramanshift即為拉曼位移或拉曼頻移,頻率的增加或減小常用波數差表示,拉曼光譜儀得到的譜圖橫坐標就是波數

    拉曼光譜實用問答集錦

    三十五.我現在正在做拉曼光譜試驗,用金金屬做底物,分析:CNBP(4-Cyanobiphenyl)和Cyclodextrin如何鑲嵌在一起,用檢測CNBP在金金屬底物上的角度和方向,平行還是垂直,來確定是否進入到Cyclodextrin里面,制備金屬底物需要購買金屬板,用硫酸洗,在用氮氣吹平,進行粗

    超快光纖激光技術:基于多芯光纖的激光系統(一)

    基于單芯光纖的激光放大器受限于自聚焦等非線性效應,在功率提升方面遭遇瓶頸。使用大模場面積光纖可以提升放大功率,但較大的模面積會引入高階模式,在高泵浦功率下出現橫模不穩定影響光斑質量。多路激光的相干合成是一種提升光纖單纖芯放大功率上限的方案,可以顯著增加輸出激光的平均功率,但不足之處在于需要相位反饋系

    拉曼問題匯總:拉曼光譜百問解答總結(四)

      三十七.有幾種激光光源?   1.氬離子、半導體、氦氖;   2.可見光激光器應用最多的是氬離子激光器,可產生:10種波長的激光,其中最強的是488納米(藍光)和514納米(綠光)激光器,現在最為常用,性能十分穩定的是514納米激光器;另外,532納米固體二極管泵浦激光器、63

    冷鐿原子精密光譜的研究進展

      1 引言  20 世紀末,科學家們利用激光實現了原子的冷卻和囚禁,并因此榮獲1997 年諾貝爾物理學獎。將冷原子應用于光譜測量可極大提高光譜的精度和分辨率,非常適合用來精確研究原子的內部結構和物理性質,檢驗基礎物理規律和探索新的物理。一方面,原子經過激光冷卻后運動速度減小,可冷卻至μK、nK甚至

    X射線自由電子激光原理和生物分子結構測定研究中應用

      1 X射線的產生  X射線本質上是電磁波,其波長范圍大致從0.01 nm 到 10 nm,與可見光(400—700 nm)不同,X 射線的短波長可以探測物質內部的精細結構,因此自從被倫琴發現以來就被用來觀測物質的內部結構。隨著人造 X射線光源的亮度和穩定性的提高,其應用范圍涵蓋物理、化學、生物、

    拉曼光譜有幾種激光光源?

    有幾種激光光源?1.氬離子、半導體、氦氖2.可見光激光器應用最多的是氬離子激光器,可產生10種波長的激光,其中最強的是488納米(藍光)和514納米(綠光)激光器,現在最為常用,性能十分穩定的是514納米激光器;另外,532納米固體二極管泵浦激光器、632.8納米(紅光)、780納米等可見光激光器;

    拉曼光譜有幾種激光光源?

    1. 氬離子、半導體、氦氖2. 可見光激光器應用最多的是氬離子激光器,可產生10種波長的激光,其中最強的是488納米(藍光)和514納米(綠光)激光器,現在最為常用,性能十分穩定的是514納米激光器;另外,532納米固體二極管泵浦激光器、632.8納米(紅光)、780納米等可見光激光器;以及785納

    半導體所高功率皮秒光纖放大器研究獲進展

      高功率和超快的光纖激光器和放大器具有光束質量好、光-光轉換效率高、脈沖能量高、熱效應小等優點,在材料微加工處理、軍工、太陽能電池等領域得以廣泛應用,高功率光纖激光器和放大器能克服傳統的固體激光器存在的一些問題。也正是由于這些獨特優勢使得其逐漸成為近年來的研究熱點之一。   中科院半導體研究所全

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频