那每幀音素對應哪個狀態呢?有個容易想到的辦法,看某幀對應哪個狀態的概率最大,那這幀就屬于哪個狀態。比如下面的示意圖,這幀對應 S3 狀態的概率最大,因此就讓這幀屬于 S3 狀態。 那這些用到的概率從哪里讀取呢?有個叫“聲學模型”的東西,里面存了一大堆參數,通過這些參數,就可以知道幀和狀態對應的概率。獲取這一大堆參數的方法叫做“訓練”,需要使用巨大數量的語音數據,訓練的方法比較繁瑣,這里不講。 但這樣做有一個問題:每一幀都會得到一個狀態號,最后整個語音就會得到一堆亂七八糟的狀態號,相鄰兩幀間的狀態號基本都不相同。假設語音有 1000 幀,每幀對應 1 個狀態,每 3 個狀態組合成一個音素,那么大概會組合成300個音素,但這段語音其實根本沒有這么多音素。如果真這么做,得到的狀態號可能根本無法組合成音素。實際上,相鄰幀的狀態應該大多數都是相同的才合理,因為每幀很短。 解決這個問題的常用方法就是使用隱馬爾可夫模型(Hi......閱讀全文
簡要給大家介紹一下語音怎么變文字的吧。希望這個介紹能讓所有同學看懂。 首先,我們知道聲音實際上是一種波。常見的 mp3、wmv 等格式都是壓縮格式,必須轉成非壓縮的純波形文件來處理,比如 Windows PCM 文件,也就是俗稱的 wav 文件。wav 文件里存儲的除了一個文件