拉曼光譜分會(下):表面增強和原位拉曼多領域應用
分析測試百科網訊 2020年11月1日,“第21屆全國分子光譜學學術會議”暨“2020年光譜年會”第二天的分會場報道,在拉曼光譜新技術及應用上午場后,下午精彩報告繼續。學者們討論了表面增強、原位拉曼等拉曼技術在食品、催化、仿生等多領域的進展,并探索了機理和過程。 吉林大學 宋薇教授 宋薇報告題目:表面增強拉曼光譜在納米材料催化體系中的應用。陳薇教授為我們介紹了氟離子抑制金屬氧化物酶的催化活性機理及檢測,其中氟具有氧化性,強電負性高,和抑制生命體中酶的活性。而對于高毒性有機汞,宋薇博士介紹了納米酶增強體系對有機汞的全去除與超靈敏SERS監測聯合平臺中在吸附、強酸、強氧化劑和紫外線照射過程中,非常耗能,耗時,存在著二次污染等問題。針對問題,現階段集中對SERS納米材料催化體系機制研究,為催化體系設計相應的催化材料;SERS-催化體系在環境醫學中的應用,探索材料獨特的催化與SERS響應性。 蘇州大學 姚建林教授 姚建......閱讀全文
拉曼課堂知識(四)—SERS表面增強拉曼光譜技術
表面增強拉曼光譜技術的原理?表面增強拉曼光譜是指將待測分子吸附在粗糙的納米金屬材料表面,可使待測物的拉曼信號增強10的6-15次方倍的光譜現象,解決了普通拉曼光譜靈敏度低的問題。SERS活性基底的制備是獲得較高拉曼增強信號的前提條件,不同的增強基底對樣品的增強效果差別很大,SERS活性基底的材料、
拉曼散射光譜簡介
一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散
拉曼光譜配件納米海綿狀SERS
完美適用于532,638和785拉曼,針對638nm的拉曼響應度最好;?更長的存放期,相對于紙質基板的1--3個月的保存期,SP 納米海綿SERS可以在常溫下存儲6個月或更久適用于高能量激光,而且可以確保SERS的整個穩定性能不變,背景基線也非常低SERS作為拉曼增強的理想附件,是提高拉曼信號的最佳
表面增強拉曼光譜SERS基底關鍵應用
表面增強拉曼光譜易于使用,為高靈敏度拉曼測量提供了很大的幫助我們的SERS基底采用創新技術制造,使您可以進行SERS快速和重復測量,從而對SERS活性的樣品進行定性分析和定量分析。典型應用包括:爆炸物和毒品的微量檢測,以及對禁止食品成分如三聚氰胺和殺蟲劑的精確識別。 SERS芯片還可通過SERS
海洋光學拉曼光譜SERS基底的優勢
海洋光學SERS基底的優勢高靈敏性。經過與同類基底進行對比測試,該基底具有很好的性能并且對一系列分析物都表現出了較高的靈敏性。高穩定性。 高穩定性基底無需特殊處理便可在室溫下儲藏。可靠的重現性。 可高度重現性和容易進行大規模生產,使得能以實惠的價格實現靈敏測量。個性化的外形。 獨特的生產技術可實現定
SERS拉曼光譜在環境領域研究現狀
SERS拉曼光譜在環境領域研究現狀列入美國EPA優先控制污染物名單中的16中多環芳烴(PAHs):萘(Nap)、苊系(AcPy)、苊(Acp)、芴(Flu)、菲(PA)、蒽(Ant)、熒蒽(Fl)、芘(Pyr)、苯并[a]蒽(BaA)、稠二萘(CHR)、苯并[b]熒蒽(BbF)、苯并[k]熒蒽(Bb
遠程表面增強拉曼光譜(SERS)技術進展
拉曼光譜是分子名片,是研究分子結構的一種重要分析方法。自上世紀七十年代表面增強拉曼光譜(SERS)技術發現以來,隨著激光技術、納米科技的迅猛發展,SERS技術不但具有拉曼光譜的大部分優點,并能夠提供更豐富的化學分子的結構信息,可實現實時、原位探測,而且靈敏度高,數據處理簡單,準確率高,是非常強有力的
拉曼散射光譜的特征
a.拉曼散射譜線的波數雖然隨入射光的波數而不同,但對同一樣品,同一拉曼譜線的位移與入射光的波長無關,只和樣品的振動轉動能級有關;?b. 在以波數為變量的拉曼光譜圖上,斯托克斯線和反斯托克斯線對稱地分布在瑞利散射線兩側, 這是由于在上述兩種情況下分別相應于得到或失去了一個振動量子的能量。?c. 一般情
拉曼散射
1921 年,印度物理學家拉曼(C. V. Raman)從英國搭船回國,在途中他思考著為什么海洋會是藍色的問題,而開始了這方面的研究,促成他于 1928 年 2 月發現了新的散射效應,就是現在所知的拉曼效應,在物理和化學方面都很重要。?1888 年 11 月,拉曼(他的全名是 Chandrasek
散射的拉曼散射
拉曼散射(Ramanscattering),光通過介質時由于入射光與分子運動相互作用而引起的頻率發生變化的散射。又稱拉曼效應。1923年A.G.S.斯梅卡爾從理論上預言了頻率發生改變的散射。1928年,印度物理學家C.V.拉曼在氣體和液體中觀察到散射光頻率發生改變的現象。拉曼散射遵守如下規律:散射光
散射的拉曼散射
拉曼散射(Ramanscattering),光通過介質時由于入射光與分子運動相互作用而引起的頻率發生變化的散射。又稱拉曼效應。1923年A.G.S.斯梅卡爾從理論上預言了頻率發生改變的散射。1928年,印度物理學家C.V.拉曼在氣體和液體中觀察到散射光頻率發生改變的現象。拉曼散射遵守如下規律:散射光
拉曼光譜配件納米海綿狀SERS應用
典型應用爆炸物?納米海綿技術的開發就是為了檢測爆炸物和化學武器,與其他技術的SERS相比,這款SERS的性能明顯優于其他SERS。食品安全?基于新版SERS對大多數農殘的測試 ,最低檢出限都能檢測到1ppm的測試,另外比如對違法食品添加劑三聚氰胺的檢測,在痕量水平都能被檢測到。反偽造?通過在燃油中添
拉曼光譜配件納米海綿狀SERS選型
我們該如何選擇SERS?對于SERS適用的不同拉曼激發波長是比較復雜的,我們沒有簡單的原理或者規則可遵循,但是我們可以從實踐中獲得很多的使用信息。經過實際使用,我們發現納米海綿SERS最佳的使用激光波長為638nm,而非大家經常使用的532nm或者785nm。我們使用不同的激發波長和測量樣品對三種S
拉曼散射光譜儀簡介
拉曼光譜儀對于普通人來說還是挺陌生的,一般在科研院所、高等院校物理和化學實驗室、生物及醫學領域等這類地方比較常見,用于光學方面和研究物質成分的判定與確認;拉曼光譜儀還可以應用于刑偵方面,進行毒品的檢測,還可以應用于珠寶行業,進行寶石的鑒定。 該儀器外形構造比較簡單,設計更加靈活,操作也很簡便,
拉曼表面增強SERS支架RMSERSSHS
海洋光學SERS基片專用支架,適合Accuman系列和模塊化拉曼探頭,能為測量提供精準的定位,隔絕環境光影響,提高測量精確性。主體和底座可以分離。安裝底座可以增加穩定性,適合Accuman探頭端直接連接并固定在支架上,還可以進一步通過螺釘固定在光學面包板上。模塊化探頭可以不安裝底座使用,減少體積。?
網絡講座:表面增強拉曼散射(SERS)在食品安全中的應用
講座主題:表面增強拉曼散射(SERS)在食品安全中的應用: 外源蛋白質檢測 時間:9月24日(周一)上午9:00-10:30 誠邀您參加! 內容簡介: 1. 表面增強拉曼光譜技術介紹 2. 如何采用增強拉曼探測外源蛋白? ――表面增強拉曼散射(SERS)技術在
表面增強拉曼散射
表面增強拉曼散射(SERS): 這是使分子或晶體歌唱聲音更強大的另一種方法,換句話說也是檢測極少量物質的一種方法,目前人們已開始用這一方法檢測單個分子了。1974年,Fleishmann等人發現,對光滑銀電極表面進行粗糙化處理后,首次獲得吸附在銀電極表面上單分子層吡啶分子的高質量的拉曼光譜。隨后V
拉曼光譜,布里淵散射光譜,紅外吸收光譜的區別
飛秒檢測發現拉曼光譜是基于分子的對稱振動產生的能量輻射和吸收,布里淵散射也屬于喇曼效應,即光在介質中受到各種元激發的非彈性散射,其頻率變化表征了元激發的能量。與拉曼散射不同的是,在布里淵散射中是研究能量較小的元激發,如聲學聲子和磁振子等。而紅外吸收光譜是基于分子的不對稱振動而產生的吸收和能量輻射
“拉曼散射”是指什么
“拉曼散射”是指一定頻率的激光照射到樣品表面時,物質中的分子吸收了部分能量,發生不同方式和程度的振動(例如:原子的擺動和扭動,化學鍵的擺動和振動),然后散射出較低頻率的光。頻率的變化決定于散射物質的特性,不同原子團振動的方式是惟一的,因此可以產生特定頻率的散射光,其光譜就稱為“指紋光譜”,可以照此原
拉曼散射的產生原理
光子和樣品分子之間的作用可以從能級之間的躍遷來分析。樣品分子處于電子能級和振動能級的基態,入射光子的能量遠大于振動能級躍遷所需要的能量,但又不足以將分子激發到電子能級激發態。這樣樣品分子吸收光子后到達一種準激發狀態,又稱為虛能態。樣品分子在準激發態時是不穩定的,它將回到電子能級的基態。若分子回到電子
拉曼散射現象的含義
光照射到物質上發生彈性散射和非彈性散射. 彈性散射的散射光是與激發光波長相同的成分,非彈性散射的散射光有比激發光波長長的和短的成分, 統稱為拉曼效應。
“拉曼散射”是指什么
“拉曼散射”是指一定頻率的激光照射到樣品表面時,物質中的分子吸收了部分能量,發生不同方式和程度的振動(例如:原子的擺動和扭動,化學鍵的擺動和振動),然后散射出較低頻率的光。頻率的變化決定于散射物質的特性,不同原子團振動的方式是惟一的,因此可以產生特定頻率的散射光,其光譜就稱為“指紋光譜”,可以照此原
拉曼散射現象的含義
拉曼效應起源于分子振動(和點陣振動)與轉動,因此從拉曼光譜中可以得到分子振動能級(點陣振動能級)與轉動能級結構的知識。用虛的上能級概念可以說明了拉曼效應:設散射物分子原來處于聲子基態,振動能級如圖1所示。當受到入射光照射時,激發光與此分子的作用引起的極化可以看作為虛的吸收,表述為聲子躍遷到虛態(Vi
瑞利散射與拉曼散射的區別
分子的外層電子在輻射能的照射下,吸收能量使電子激發至基態中較高的振動能級,在10-12s左右躍回原能級并產生光輻射,這種發光現象稱為瑞利散射.分子的外層電子在輻射能的照射下,吸收能量使電子激發至基態中較高的振動能級,在10-12s左右躍回原能級附近的能級并產生光輻射,這種發光現象稱為拉曼散射.兩者皆
SERS、TERS-誰能實現拉曼亞納米分辨?
納米尺度上的化學識別對于微觀結構的設計與功能調控至關重要,而實現相鄰不同分子的化學識別則代表著識別技術的一種極限挑戰。最近,中國科學技術大學微尺度物質科學國家實驗室單分子科學團隊董振超研究組朝著這一極限目標又邁出了重要一步——他們繼2013年成功實現亞納米分辨的單分子拉曼光譜成像之后,又在國際上
拉曼光譜
1、單道檢測的拉曼光譜分析技術。2、以CCD為代表的多通道探測器的拉曼光譜分析技術。3、采用傅立葉變換技術的FT-Raman光譜分析技術。4、共振拉曼光譜分析技術。5、表面增強拉曼效應分析技術。
拉曼光譜
一、拉曼光譜的基本原理用單色光照射透明樣品時,光的絕大部分沿著入射光的方向透過,一部分被吸收,還有一部分被散射。用光譜儀測定散射光的光譜,發現有兩種不同的散射現象,一種叫瑞利散射,另一種叫拉曼散射。1.瑞利散射散射是光子與物質分子相互碰撞的結果。如果光子與樣品分子發生彈性碰撞,即光子與分子之間沒有能
拉曼光譜
一、拉曼光譜的基本原理用單色光照射透明樣品時,光的絕大部分沿著入射光的方向透過,一部分被吸收,還有一部分被散射。用光譜儀測定散射光的光譜,發現有兩種不同的散射現象,一種叫瑞利散射,另一種叫拉曼散射。1.瑞利散射散射是光子與物質分子相互碰撞的結果。如果光子與樣品分子發生彈性碰撞,即光子與分子之間沒有能
拉曼光譜新技術及應用巨獻:生物和化學材料前景廣闊
分析測試百科網訊 2020年11月1日,由中國光學學會和中國化學會主辦的“第21屆全國分子光譜學學術會議”暨由中國光學會光譜專業委員會主辦的“2020年光譜年會”,在四川成都世外桃源酒店繼續召開。在第一天大會報告后,組委會安排了精彩的分會報道,分設了原子光譜新技術及應用、拉曼光譜新技術及應用、紅
紅外吸收光譜和拉曼散射光譜的區別與聯系
紅外光譜和拉曼光譜都屬于分子振動光譜,作為兩種重要的研究手段常被用于結構鑒定、反應分析和晶型研究等領域,是分子結構層面的有力研究手段。二者相輔相成,既互相補充又有很大的差別。 紅外吸收光譜是由分子振動產生,分子振動是指分子中各原子在平衡位置附近作相對運動,多原子分子可組成多種振動圖形。當分子中