比類器官還要高級的操作——類裝配體
【前沿技術】Nature最新揭露:比類器官還要高級的操作——類裝配體 01研究背景 類器官大部分來源于能自我分化的干細胞,常形成三維細胞團,具有器官的部分特性,但是此類模型未考慮到天然的組織結構和微環境,而且大量的細胞從生理環境中取出都會改變其特性。 這篇研究中使用了正常膀胱干細胞或膀胱腫瘤患者的類器官,使之與組織基質和微環境其他成分一起重構,包括組織基質中的基質成纖維細胞、內皮細胞、免疫細胞和肌肉細胞,并提出了表觀遺傳控制腫瘤可塑性機制。 02結果解構 1)作者在原有培養的膀胱類器官中通過3D打印技術加入了組織基質和肌肉成分——基質成纖維細胞(小鼠胚胎成纖維細胞)和內皮細胞(HULECs-以及肌肉層,培養成了能夠生長200天的三層膀胱類裝配體,作者通過H&E染色和免疫熒光融合圖展現了不同細胞組分在空間上的構象:具有多層折疊的尿路上皮基質含有波形蛋白陽性的間質成纖維細胞和CD31陽性內皮細胞,被α-平滑肌肌......閱讀全文
類器官(organoids):器官芯片技術培育人胰島類器官
近日,中國科學院大連化學物理研究所研究員秦建華團隊利用器官芯片技術培育人多能干細胞衍生的胰島類器官取得新進展,相關成果發表在器官芯片領域刊物Lab on a chip上,并被選為封面文章。 類器官(organoids)是一種通過干細胞自組織方式形成的多細胞三維復雜結構,它能夠在體外模擬具有來源
什么是類器官?
類器官屬于三維(3D)細胞培養物,包含其代表器官的一些關鍵特性。此類體外培養系統包括一個自我更新干細胞群,可分化為多個器官器官特異性的細胞類型,與對應的器官擁有類似的空間組織并能夠重現對應器官的部分功能,從而提供一個高度生理相關系統。
什么是類器官?
類器官和真正的器官非常相似,從專業角度闡釋,類器官是體外的3維立體微型細胞簇,高度模擬體內相應器官的結構和功能。通俗來講就是類器官是一個體外構成的具有自我更新,自我組織能力的微型器官,與真實的器官具有相似的空間組織并且能夠執行原始器官功能。
類器官的發展歷程
1907年,Henry Van 發現物理分離的海綿細胞可以重現聚集,自行組成一個新的功能完善的海綿。在接下來的幾十年里,脊椎動物中也發現了相似的細胞分離再聚合現象,例如1944年Holtfreter的兩棲動物腎組織實驗和1960年Weiss的禽類胚胎實驗。1961年 Piercehe和 Verney
類器官進展人鼠混合大腦類器官首次對視覺刺激做出反應
隨著干細胞技術的不斷進步,源自人誘導多功能干細胞(human induced pluripotent stem cells, hiPSCs)的腦類器官已成為疾病模型中的熱門話題。腦類器官有望為藥物篩選、精準醫學、神經修復等領域帶來新的發展契機。 腦類器官的優勢體現在下面兩個方面: -與二維細
小小類器官 承載移植夢
經過近10年的快速發展,科學家們已經能在實驗室利用細胞培育、分化、自組裝成各種類似人體組織的3D結構,制造出肝臟、胰臟、胃、心臟、腎臟甚至乳腺等在內的各種類器官。英國著名學術期刊《發育》雜志3月刊以專版形式,對類器官研究領域進行了全面回顧。 《科學》雜志網站報道稱,這些實驗室類器官并不是各種細
研究創造新型人腦“類器官”
人類神經系統疾病背后的遺傳學是復雜的,大跨度的基因組參與了疾病的發生和發展。研究其他動物的神經疾病給相關發現提供了的機會很有限,因為人類的大腦非常獨特。哈佛大學(Harvard University)和布羅德研究所(Broad Institute)斯坦利精神病學研究中心(Stanley Cent
類器官的構建與制備
類器官的形成:類器官可以由兩種類型細胞產生,一是多能干細胞(PSCs),例如胚胎干細胞(ESCs)、誘導干細胞(iPSCs),或器官限制性成體干細胞(ASCs)。這些細胞被培養在一個特定的環境中,允許它們遵循根深蒂固的基因指令,自x行組織成功能性的3D結構。從各種組織中培養類器官的方法是相似的。干細
類器官發育指標首次定義
近日,德國和奧地利的聯合科研團隊首次定義了器官發育的指標,揭示了組織中三維結構的連通性和結構的出現之間的聯系,將有助于科學家設計模仿人體器官的自組織組織。 人體器官具有復雜的充滿液體的管路和環路網絡。它們具有不同的形狀,并且不同器官的三維結構彼此之間的連接也不同。這方面的一個例子是腎臟的分支網
類器官的作用和前景
目前類器官的培養主要是指上皮細胞類器官, 如消化道上皮細胞、乳腺上皮細胞、皮膚上皮細胞、肺泡上皮細胞等, 大部分的類器官中只有上皮細胞, 不含有成纖維細胞、免疫細胞、血管細胞等周圍基質細胞. 這在很大程度上限制其在其他領域的應用, 如免疫防御的研究、干細胞微環境、腫瘤微環境調控方面的研究. 今后的研