多層石墨烯的拉曼光譜表征 Part1 引言 石墨烯是sp2碳原子緊密堆積形成的六邊形蜂窩狀結構二維原子晶體,具有高電導率和熱導率、高載流子遷移率、自由的電子移動空間、高強度和剛度等優勢,將在微納電子器件、光電檢測與轉換材料、結構和功能增強復合材料及儲能等廣闊的領域得到應用;在半導體產業、光伏產業、鋰離子電池、航天、軍工、新一代顯示器等傳統領域和新興領域都將帶來革命性的技術進步,一旦量產必將成為下一個萬億級的產業。 1.jpg 然而,石墨烯物理性質研究和器件應用的快速發展對材料的制備和表征提出了新的要求,自從石墨烯發現以來,各種表征方法被廣泛地用于石墨烯材料的研究。拉曼光譜是一種快速無損的表征材料晶體結構、電子能帶結構、聲子能量色散和電子-聲子耦合的重要的技術手段,具有較高的分辨率,是富勒烯、碳納米管、金剛石研究中最受歡迎的表征技術之一,在碳材料的發展歷程中起到了至關重要的作用。利用拉曼分析我們......閱讀全文
2004年英國曼徹斯特大學的A.K.Geim領導的小組首次通過機械玻璃的方法成功制備了新型的二維碳材料-石墨烯(graphene)。自發現以來,石墨烯在科學界激起了巨大的波瀾,它在各學科方面的優異性能,使其成為近年來化學、材料科學、凝聚態物理以及電子等領域的一顆新星。
2004年英國曼徹斯特大學的A.K.Geim領導的小組首次通過機械玻璃的方法成功制備了新型的二維碳材料-石墨烯(graphene)。自發現以來,石墨烯在科學界激起了巨大的波瀾,它在各學科方面的優異性能,使其成為近年來化學、材料科學、凝聚態物理以及電子等領域的一顆新星。 就石墨烯的研究來說,確定
拉曼光譜(Raman Spectra),是一種散射光譜。拉曼光譜分析法是基于印度科學家C.V.拉曼(Raman)所發現的拉曼散射效應,對與入射光頻率不同的散射光譜進行分析以得到分子振動、轉動方面信息,并應用于分子結構研究的一種分析方法。今天分享一些問答集錦,希望對你有幫助。一、測試了一些樣品,得到的
多層石墨烯的拉曼光譜表征 Part1 引言 石墨烯是sp2碳原子緊密堆積形成的六邊形蜂窩狀結構二維原子晶體,具有高電導率和熱導率、高載流子遷移率、自由的電子移動空間、高強度和剛度等優勢,將在微納電子器件、光電檢測與轉換材料、結構和功能增強復合材料及
多層石墨烯的拉曼光譜表征 Part1 引言 石墨烯是sp2碳原子緊密堆積形成的六邊形蜂窩狀結構二維原子晶體,具有高電導率和熱導率、高載流子遷移率、自由的電子移動空間、高強度和剛度等優勢,將在微納電子器件、光電檢測與轉換材料、結構和功能增強復合材料及儲能等廣闊的領域得到應用;在半導體產業
超全面石墨烯檢測方法大匯總,看完就是石墨烯檢測專家了! 2004年,康斯坦丁博士通過膠帶從石墨上分離出石墨烯這種“神器的材料”,它的出現在全世界范圍內引起了極大轟動…… 石墨烯具有非同尋常的導電性能、極低的電阻率極低和極快的電子遷移的速度、超出鋼鐵數十倍的強度,極好的透光性……這些優異的性能
6月2日下午,賽默飛世爾科技借分析測試百科網這一平臺成功舉辦了本月第一場網絡視頻講座——拉曼光譜在碳材料方面的應用。賽默飛世爾科技張衍亮博士為大家介紹了拉曼光譜如何表征碳納米材料諸如碳納米管與石墨烯的物理與化學結構,以及賽默飛世爾新型DXR激光拉曼光譜儀在碳納米材料領域的技術特點。 拉曼
2018年10月20日,第二十屆全國分子光譜學學術會議暨2018年光譜年會開幕式暨40周年慶典在青島舉辦(相關報道:慶祝中國光譜40年 構建中國光譜新時代)。在第一天的大會報告之后(相關報道:古人學問無遺力 今有分子光譜百家鳴),組委會也安排了精彩分會報告。分析測試百科網作為合作媒體為您帶來拉曼
就石墨烯的研究來說,確定其層數以及量化無序性是至關重要的。激光顯微拉曼光譜恰好就是表征上述兩種性能的標準理想分析工具。通過測量石墨烯的拉曼光譜我們可以判斷石墨烯的層數、堆垛方式、缺陷多少、邊緣結構、張力和摻雜狀態等結構和性質特征。本文材料+小編將為大家揭秘石墨烯拉曼光譜測試。2004年英國曼徹斯特大
石墨烯是sp2碳原子緊密堆積形成的六邊形蜂窩狀結構的二維原子晶體,是構建其它sp2雜化碳的同素異形體的基本組成部分,可以堆垛形成三維的石墨,卷曲形成一維的碳納米管,也可以包裹形成零維的富勒烯。 直到 2004 年,英國曼徹斯特大學的Geim和Novoselov等使用膠帶剝離技術,才首次成功地制
——第十九屆全國分子光譜學學術會議暨2016年光譜年會大會報告(二) 分析測試百科網訊 2016年10月28日,第十九屆全國分子光譜學學術會議暨2016年光譜年會在福州盛大開幕(詳見本網報道:光譜領域專家匯聚福州 共同探討光譜學發展),會議由中國光學學會和中國化學會主辦,中國科學院福建物質結構研究
最近,在國家自然科學基金委員會、科技部和中國科學院的資助下,中國科學院金屬研究所沈陽材料科學國家(聯合)實驗室先進炭材料研究部研究員成會明、任文才研究小組在石墨烯的控制制備、結構表征與物性的研究方面取得了一系列新的進展,相關的研究成果發表在國際期刊上。 石墨烯(graphene
在鋰離子電池發展的過程當中,我們希望獲得大量有用的信息來幫助我們對材料和器件進行數據分析,以得知其各方面的性能。目前,鋰離子電池材料和器件常用到的研究方法主要有表征方法和電化學測量。 電化學測試主要分為三個部分:(1)充放電測試,主要看電池充放電性能和倍率等;(2)循環伏安,主要是看電池的充放
分析測試百科網訊,近年來,制造企業原材料檢驗,食品藥品市場監督和打假,考古,法醫,臨床等領域的移動光譜應用層出不窮,越來越廣泛。移動光譜產品體積越來越小,性能越來越強悍。在不遠的將來,光譜儀還將同智能手機、可穿戴設備結合,變成我們每個人的眼睛去洞察大千世界。近日,分析測試百科網采訪了移動光譜尤其
表征石墨烯的手段主要有透射電子顯微鏡(TEM)、X射線衍射(XRD)、紫外光譜(UV)、原子力顯微鏡(AFM)、拉曼光譜(RAMAN)、掃描隧道顯微鏡(STM)及光學顯微鏡等。其中,XRD和UV均可對石墨烯的結構進行表征,主要用來監控石墨烯的合成過程;而表征石墨烯的層數可以采取的手段有TEM、RAM
石墨烯是由單層碳原子緊密堆積成二維蜂窩狀晶格結構的一種碳質新材料。由于其獨特的二維結構和優異的晶體學質量,石墨烯蘊含了豐富而新奇的物理現象,使其迅速成為凝聚態物理領域近年來的研究熱點之一。單層石墨烯可以逐層按不同方式堆垛成多層石墨烯,每一種多層石墨烯材料都顯示出獨特的電子能帶結構和物
石墨烯是由單層碳原子緊密堆積成二維蜂窩狀晶格結構的一種碳質新材料。由于其獨特的二維結構和優異的晶體學質量,石墨烯蘊含了豐富而新奇的物理現象,使其迅速成為凝聚態物理領域近年來的研究熱點之一。單層石墨烯可以逐層按不同方式堆垛成多層石墨烯,每一種多層石墨烯材料都顯示出獨特的電子能帶結構和物理特性。確定
分析測試百科網訊 2018年10月20日,由中國光學學會和中國化學會主辦的“第20屆全國分子光譜學學術會議”暨由中國光學會光譜專業委員會主辦的“2018年光譜年會”在山東省青島市銀沙灘溫德姆至尊酒店隆重召開,本次會議由中國科學院青島生物能源與過程研究所承辦。國內外光譜及相關領域的院士、知名專家學
二維層狀晶體材料,比如石墨烯和二硫化鉬(MoS2)等,具有優良的電學性能和光學性能,因此被期待可用來發展更薄、導電速度更快的新一代電子元件、晶體管和光電器件。近幾年來,平面內各向異性的二維晶體材料,如黑磷(BP),二硫化錸(ReS2)和二硒化錸(ReSe2)等,由于其具備的獨特性質和在納米器件方
2014年11月1日,第十八屆全國分子光譜學學術會議在素有“人間天堂”美稱的蘇州獨墅湖畔盛大開幕。本屆會議由中國光學會、中國化學會聯合主辦,蘇州大學材料與化學化工學部承辦,由蘇州市化學化工學會、上海光譜儀器有限公司協辦。近500位分子光譜科學工作者參加了此次光譜會議,盛況空前
以石墨烯為代表的二維材料具有優良的電學性能和光學性能,因此被期待可用來發展更薄、導電速度更快的新一代電子元件、晶體管和光電器件。將石墨烯堆疊起來可以得到多層石墨烯。除了具有和體石墨相同的Bernal堆垛(即AB堆垛)方式的多層石墨烯之外,還可以在實驗室制備或者合成出不同石墨烯片層取向隨機的多層石
賽默飛世爾科技“拉曼光譜在碳材料方面的應用”已經開始,點擊下面的鏈接即可參加: http://www.antpedia.com:81/ant_video/thermo/thermo6/raman-spectra-c.html 然后輸入您的用戶名、郵箱即可 近年來,碳納
眾所周知,石墨烯是一種零帶隙的二維原子晶體材料,為了適應其快速應用,人們發展了一系列方法來打開石墨烯的帶隙,例如:打孔,用硼或氮摻雜和化學修飾等,這樣就會給石墨烯引入缺陷,從而對其電學性能和器件性能有很大的影響。拉曼光譜在表征石墨烯材料的缺陷方面具有獨特的優勢,帶有缺陷的石墨烯在1350cm-1附近
石墨烯是迄今人類發現的最薄、強度最大、導電和導熱性能最強的材料之一,然而,目前市場銷售的石墨烯相關材料的質量卻千差萬別,尚無用于表征石墨烯的標準,造成對市場提供的大量石墨烯材料無法進行可靠比較,特別是在尋求滿足一定目標性能的石墨烯材料時采購風險更大。 近日,加拿大國家研究理事會(NRC)組建了
碳家族發展歷程 碳具有sp3、sp2和sp種雜化態,通過不同雜化態可以形成多種碳的同素異形體,如通過sp3雜化可以形成金剛石,通過sp3與sp2雜化則可以形成碳納米管、富勒烯和石墨烯等,如下圖所示。a金剛石 b石墨 c藍絲黛爾石 d、e、f足球烯g無定形碳 h碳納米管 1996年化學諾貝爾獎被授
分析測試百科網訊 2016年4月22-26日,2016全國表面分析應用技術學術交流會在古都西安召開。交流會由全國微束分析標準化技術委員會表面分析分技術委員會、中國科學院化學研究所、北京師范大學、北京化工大學、廣東省表面分析專業
石墨烯目前最靠譜的似乎是在新型的電池中,更確切的說實在新型超級電容器中的應用研究。但是,似乎人們或有意或無意的都回避了一個問題,石墨烯的批量制造問題。 這個與納米材料的狀況很接近。石墨烯的很多特別性能都是建立在其單層結構上。但是批量獲得一個原子厚度的石墨單層在未來的幾年我看不到希望。 最終很
如果材料本身有意識,所有的材料一定都嫉妒石墨烯。這家伙紅得發紫,是當下材料領域最耀眼的明星。 細想下來,我在材料科學這個領域居然混了將近20年了。96年是國家863成果10周年成果展覽,想起當時的盛況,恍如昨日。 如果說那一年最耀眼的材料明星是誰,當之無愧的是富勒烯。 不知道是偶然還是必然
具有鋸齒形邊緣結構的石墨烯納米帶(Z-GNR)由于其獨特的金屬性邊緣態,已成為石墨烯研究領域內的一種重要結構。大量理論預言表明,鋸齒形邊緣結構由于邊界碳原子2p軌道上存在的非成鍵電子,導致了局域的自旋極化邊緣電子態,并且邊緣上電子自旋呈鐵磁性排列,因此在自旋閥、自旋存儲器件中將有
由中國科學院半導體研究所半導體超晶格國家重點實驗室科研人員張昕和譚平恒撰寫的關于不同類型層狀材料的拉曼散射光譜的綜述論文,近日在Nanoscale 發表(Xin Zhang, Qing-Hai Tan, Jiang-Bin Wu, Wei Shi and Ping-Heng Tan, Nanos