到了第二階段,則需要利用微流體裝置對合成的治療蛋白進行純化。墨菲等人對治療蛋白質純化的工作流程:吸附——洗滌——洗脫進行了優化,設計了一種微流體裝置,通過電磁閥操縱該裝置來控制單個微機械閥和相關的振蕩壓力脈沖。這一發明將產品純度提高到了98.5%,產品收率到了54.6%,遠高于其他方法。純化實驗成功之后,科研人員又接著開發了一個集成的微流體平臺,即TOC。它可以讓治療蛋白的合成與純化(CFPS + P)都實現自動化工作。人們將連續流動反應器和批量純化裝置結合在一起,并借助管儲器將兩個過程結合在一起。在純化之前,管儲器會將連續流動反應器(那個蛇形通道)所生產的蛋白質儲存在芯片上,從而讓不同流程能夠在一個便攜裝置內更好的兼容。這一整套操作微流體系統的裝置只有公文包大小,已經是高度便攜的治療蛋白生產系統了。同時,也表現出了非常好的活性和抗菌能力。這樣既把治療蛋白的生產變得簡單高效經濟,又能最小程度地減少試樣和試劑,研發和生產速度也能十......閱讀全文
到了第二階段,則需要利用微流體裝置對合成的治療蛋白進行純化。墨菲等人對治療蛋白質純化的工作流程:吸附——洗滌——洗脫進行了優化,設計了一種微流體裝置,通過電磁閥操縱該裝置來控制單個微機械閥和相關的振蕩壓力脈沖。這一發明將產品純度提高到了98.5%,產品收率到了54.6%,遠高于其他方法。純化實驗成功
在國家隊的加持下,芯片成為當之無愧的帶貨網紅。各路媒體們焚膏繼晷,幾天就炮制出了不少“芯片制造為什么難”“一文讀懂芯片產業”“X國芯片往事”等雄文。不過,大家的關注點都聚焦在芯片之于電子行業的重大意義。可能少有人了解,芯片在生物醫療上也有著不小的價值,并且也是一條不容忽視、日新月異的科技主賽道。就在
微流控技術問世至今有近30年歷史,但其發展迅猛,被稱為下一代醫療診斷“顛覆性技術”。通過利用微流體芯片進行的研究一直都在不斷進行中,近日一項關于乳腺癌細胞轉移相關的研究就用到該技術。來自密西根大學安娜堡分校的研究人員利用新開發的高通量微流體芯片,發現了轉移性乳腺癌細胞的重要特性之一 —&n
微流體操縱技術是微流控芯片技術中最重要的一個研究領域之一,通過各種機械或非機械力實現對流體的驅動和控制。依據微流體驅動體系中有無機械活動部件,可以將其分為機械和非機械驅動系統。 a、機械驅動系統 主要包括壓電微泵、靜電微泵等,它主要是通過靜電、壓電等不同方法來觸發引起的機械部件的運
① 良好的加工性不同的加工方法對聚合物的加工性有不同的要求。 由于微通道的構型越來越趨于復雜,高深寬比的微通道的優點很多,所以聚合物材料應具有良好的加工性。② 良好的電絕緣性和熱性能由于微流控芯片中的液體驅動經常采用電驅動方式,而且芯片經常被用于進行電泳分離,加高壓電場會產生熱量
驅動:通過外力的作用驅動微流控芯片內的液體。控制:控制流體的速度、方向開啟關閉流動及混合液的流動。簡單來說,微流控芯片的主要形態特征是各種構型的微通道網絡、微閥、微泵的集合體。一般地,在微流控系統中,主要是通過泵實現流體的驅動,它起著傳輸液流和分配液流的作用,掌控著整個過程的成敗,是實現微流體控制的
1.電滲控制電滲是指在電場作用下,微通道內的液體沿通道內壁作整體定向移動。與微閥控制相比,電滲控制的最大特點是操作簡單靈活,僅通過調節節點的電壓值就可以控制其流動的方向和速度。以芯片電泳為例,在進樣通道施加不同的電壓,可控制所進樣品的體積,當形成穩定的進樣區帶后,切換電壓,即可完成進樣過程,隨后樣品
剛開發成功的一種混合器件集成了用于樣品制備的微流控芯片和用于對單個病毒RNA分子進行光檢測的光流控芯片。目前檢測埃博拉病毒的金標準依靠聚合酶鏈反 應(PCR)這種方法來擴增病毒的遺傳物質以供檢測。因為PCR作用于DNA而埃博拉病毒是一種RNA病毒,所以在進行PCR擴增和檢測前要用逆轉錄酶制 作病
Fluidigm Corporation已開始向中國客戶提供直接服務。Fluidigm于2012年1月下旬在中國建立了全資Fluidigm子公司,官方名稱為富魯達(上海)儀器科技有限公司(Fluidigm(Shanghai)InstrumentTechnologyCo.,Ltd.