<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    極紫外激光的可靠光源?少周期飛秒驅動源激光脈沖產生

    少周期飛秒驅動源是產生極紫外波段孤立阿秒脈沖的重要條件,采用常規方案需要經過光譜展寬與脈沖壓縮兩個過程,不僅效率低,而且壓縮元件對大能量脈沖的承受能力也極為有限。近年來人們利用光譜展寬過程中的非線性效應實現色散補償,即自壓縮效應,為這一問題的解決提供了新的思路,不僅簡化了脈沖壓縮過程,也有利于大能量超短脈沖的產生。然而自壓縮效應存在著復雜的非線性過程,既要展寬脈沖光譜,又要滿足脈沖傳輸過程中的正負色散匹配,因此對自壓縮效應的控制極為困難。尤其對常用的800nm波段鈦寶石激光,由于缺乏具有合適負色散的光學材料,通常很難實現自壓縮。 中國科學院物理研究所/北京凝聚態物理國家研究中心光物理重點實驗室魏志義研究組(L07組)多年來致力于少周期激光脈沖產生的研究,最近該組博士研究生高亦談在趙昆、魏志義等人的指導下,基于研究組內發展的薄片組光譜展寬技術,利用飛秒鈦寶石放大激光電離產生的錐狀輻射效應,通過在空間上精確尋找到色散匹配最佳位......閱讀全文

    極紫外激光的可靠光源?少周期飛秒驅動源激光脈沖產生

      少周期飛秒驅動源是產生極紫外波段孤立阿秒脈沖的重要條件,采用常規方案需要經過光譜展寬與脈沖壓縮兩個過程,不僅效率低,而且壓縮元件對大能量脈沖的承受能力也極為有限。近年來人們利用光譜展寬過程中的非線性效應實現色散補償,即自壓縮效應,為這一問題的解決提供了新的思路,不僅簡化了脈沖壓縮過程,也有利于大

    亞周期光場調控研究獲進展-高效率超連續光譜

      亞周期光場作為超快光學的前沿熱點,是實現對光場極端調控的重要目標,有助于人們從光場波形的本源上認識和調控光與物質相互作用過程,也是產生孤立阿秒脈沖的理想驅動光源之一。如何產生小于一個光學周期的超快光場,面臨著頗具挑戰性的問題:高效率超連續光譜的產生、超倍頻程激光光譜的色散管理、多束激光脈沖之間的

    物理所成功產生中紅外波段高平均功率近周期飛秒激光脈沖

      擴展激光波長范圍是光譜學的重要內容之一,得益于超快光學的快速發展,目前人們已產生了振蕩頻率覆蓋從太赫茲、紅外、可見、極紫外乃至X射線的相干輻射,極大地推進了光科學挑戰極限的能力。特別是近年來在阿秒脈沖激光、光學頻率梳、超強物理等研究中,紅外飛秒激光作為取得新突破的基礎和關鍵,引起了人們越來越廣泛

    中紅外實現飛秒激光脈沖 波長覆蓋6.8-16.4μm波段

      擴展激光波長范圍是光譜學的重要內容之一,得益于超快光學的快速發展,目前人們已產生了振蕩頻率覆蓋從太赫茲、紅外、可見、極紫外乃至X射線的相干輻射,極大地推進了光科學挑戰極限的能力。特別是近年來在阿秒脈沖激光、光學頻率梳、超強物理等研究中,紅外飛秒激光作為取得新突破的基礎和關鍵,引起了人們

    魏志義團隊《APL》發文:邁向亞周期光場調控的新進展

      亞周期光場作為超快光學的前沿內容,一直是人們實現對光場極端調控的重要目標,其不僅有助于人們從光場波形的本源上認識和調控光與物質相互作用過程,而且也是產生孤立阿秒脈沖的理想驅動光源之一。但是如何產生小于一個光學周期的超快光場,長期以來面臨著三個極具挑戰性的重要問題:1.高效率超連續光譜的產生;2.

    研究實現超快激光脈沖之間的全相位鎖定調控

      實現多束不同光譜超快激光脈沖,特別是飛秒激光脈沖的相干合成,不僅可以有效提高激光脈沖的總能量,也是獲得亞周期激光脈沖的重要手段,并能突破單束激光脈沖所能提供的峰值功率限制的瓶頸。因此,超快激光脈沖之間的同步與相干合成已成為近年來激光物理領域的重要研究課題,其關鍵技術之一是脈沖之間的全相位鎖定與調

    物理所高次諧波光譜中的全量子軌道映射研究獲進展

      原子內部電子動力學行為的演化是物理、化學、生物以及材料等學科研究中最基本的過程。精密測量電子的動力學特性,實現對其物理性質的理解,進而控制原子內電子的動力學行為是人們追求的重要科學目標之一。具有阿秒(10-18秒)時間分辨的高次諧波由于光子能量高(10eV~keV量級)、脈寬短(亞飛秒

    激光脈沖沉積(PLD)簡介

      脈沖激光沉積 (Pulsed laser deposition),就是將激光聚焦于靶材上一個較小的面積,利用激光的高能量密度將部分靶材料蒸發甚至電離,使其能夠脫離靶材而向基底運動,進而在基底上沉積,從而形成薄膜的一種方式。 在眾多的薄膜制備方法中,脈沖激光沉積技術的應用最為廣泛,可用來制備金屬、

    激光脈沖沉積(PLD)的機制

      PLD的系統設備簡單,相反,它的原理卻是非常復雜的物理現象。它涉及高能量脈沖輻射沖擊固體靶時,激光與物質之間的所有物理相互作用,亦包括等離子羽狀物的形成,其后已熔化的物質通過等離子羽狀物到達已加熱的基片表面的轉移,及最后的膜生成過程。所以,PLD一般可以分為以下四個階段:  1. 激光輻射與靶的

    激光脈沖沉積(PLD)的優點

      1. 易獲得期望化學計量比的多組分薄膜,即具有良好的保成分性;  2. 沉積速率高,試驗周期短,襯底溫度要求低,制備的薄膜均勻;  3. 工藝參數任意調節,對靶材的種類沒有限制;  4. 發展潛力巨大,具有極大的兼容性;  5. 便于清潔處理,可以制備多種薄膜材料。

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频