紅外光譜的原理:當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級,分子吸收紅外輻射后發生振動和轉動能級的躍遷,該處波長的光就被物質吸收。所以,紅外光譜法實質上是一種根據分子內部原子間的相對振動和分子轉動等信息來確定物質分子結構和鑒別化合物的分析方法。......閱讀全文
形象的來說,可樂的價錢是1毛錢,你扔進去1毛錢,你就能得到可樂,這是紅外。可是如果你扔進去1塊錢,會出來一瓶可樂和9毛找的錢,你仍舊可以知道可樂的價錢,這就是拉曼。如何選擇紅外光譜與拉曼光譜? 1) 拉曼譜峰比較尖銳,識別混合物,特別是識別無機混合物要比紅外光譜容易。 2) 在鑒定有機化合
Quantum Design公司一直致力于引進先進的紅外光譜技術,其中neaspec納米傅里葉紅外光譜儀、微秒級時間分辨超靈敏紅外光譜儀在探尋紅外光譜測量極限上展現了獨特的魅力,先后獲得科學儀器“優秀新品獎”。 近年來,在多領域大發展及各類新技術不斷進步的形勢下,傳統的紅外光譜
【摘 要】隨著生活水平的提高,人們對食品的質量安全越來越關注。檢驗檢測就是重要的大門守衛,為人們把守食品安全的大門。紅外光譜技術,雖然在食品檢測應用方面時間較短,但成效顯著。本文對紅外光譜技術及其運用進行了簡要的介紹和分析探討。 0.引言 常言道:“民以食為天,食以安
本期給大家普及一種可以分析不同強度Lewis酸的分子探針紅外光譜技術——乙腈紅外光譜。相較于吡啶紅外光譜,乙腈紅外光譜技術略顯“小眾”。不過,作為一種吸附質紅外光譜技術,它憑借自身的特點在一定程度上彌補了吡啶紅外光譜的不足。特別是在面對一些需要精細解析表面酸強度的材料時,乙腈紅外能很好地展現出它
紅外光譜又叫做紅外吸收光譜,它是紅外光子與分子振動、轉動的量子化能級共振產生吸收而產生的特征吸收光譜曲線。要產生這一種效應,需要分子內部有一定的極性,也就是說存在分子內的電偶極矩。在光子與分子相互作用時,通過電偶極矩躍遷發生了相互作用。因此,那些沒有極性的分子或者對稱性的分子,因為不存在電偶極矩
拉曼光譜的原理及應用 拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以
紅外光譜圖怎么看?小編總結了一些技術內容。什么是光譜技術?有哪些分類,紅外屬于哪一類?光譜分析是一種根據物質的光譜來鑒別物質及確定它的化學組成,結構或者相對含量的方法。按照分析原理,光譜技術主要分為吸收光譜,發射光譜和散射光譜三種;按照被測位置的形態來分類,光譜技術主要有原
1 紅外光的定義紅外光是英國科學家赫歇爾1800年在實驗室中發現的。它是波長比紅光長的電磁波,具有明顯的熱效應,使人能感覺到而看不見。科學家發現,一定波長的光(可見光或不可見光)照射到某些金屬等材料表面時,金屬等材料會發射電子流,稱為光電效應。紅外光,又叫紅外線,是波長比可見光要長的電磁波(光),波
淺談傅立葉變換紅外光譜技術與應用喬冬平 摘 要 紅外光譜法是進行材料分析及監控的有力手段,介紹了傅立葉變換紅外光譜技術與應用。 關鍵詞 紅外光譜 紅外分析 制樣技術 紅外光譜法是鑒別物質和分析物質結構的有用手段,已廣泛用于各種物質的定性鑒定和定量分析,以及研究分子間和分子內部的相互作用。紅
拉曼光譜的原理及應用 拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的
拉曼光譜的原理及應用 拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的
拉曼光譜的原理及應用 拉曼光譜由于近幾年來以下幾項技術的集中發展而有了更廣泛的應用。這些技術是:CCD檢測系統在近紅外區域的高靈敏性,體積小而功率大的二極管激光器,與激發激光及信號過濾整合的光纖探頭。這些產品連同高口徑短焦距的分光光度計,提供了低熒光本底而高質量的拉曼光譜以及體積小、容易使用的
當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級,分子吸收紅外輻射后發生振動和轉動能級的躍遷,該處波長的光就被物質吸收。所以,紅外光譜法實質上是一種根據分子內部原子間的相對振動和
一直努力為科學工作者提供更加完善的分析儀器和高效迅捷的分析方法的世界知名分析儀器供應商島津公司,為了幫助島津各行業的紅外用戶提高儀器使用效率,充分發揮儀器和軟件的作用,提高分析技術人員的專業素質和技術水平,將從2012年6月12日開始,特別舉辦為期4天的紅外光譜高級應用培訓班。 培訓班特邀
摘要: 軋制油是鋁板、帶、箔生產工藝中紀委重要的輔助材料,它直接影響到工藝的運行及最終產品的質量,而軋制油中的添加劑含量又是軋制油的一個重要指標。軋制油的添加劑主要由酸、醇、酯等組成,它們都有含氧取代基(分別為羧基、羥基和酯基),三者特征吸收峰互不干擾亦不受背景(基礎油)影響,根據朗伯-比
在鋰離子電池發展的過程當中,我們希望獲得大量有用的信息來幫助我們對材料和器件進行數據分析,以得知其各方面的性能。目前,鋰離子電池材料和器件常用到的研究方法主要有表征方法和電化學測量。 電化學測試主要分為三個部分:(1)充放電測試,主要看電池充放電性能和倍率等;(2)循環伏安,主要是看電池的充放
1.基本原理紅外光譜又稱為分子振動轉動光譜,是一種分子吸收光譜。當一束具有連續波長的紅外光通過物質時,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級。因此,物質分子吸收紅外輻射發生振動和轉動能級躍遷的波長處就出現紅外
摘要: 醫藥化工行業的原料(輔料)、成品的種類繁多、生產過程復雜多樣,許多藥品化學結構比較復雜或者相互之間的化學差異較小,常規方法如:顏色反應、沉淀、結晶形成或U V -V IS等方法常常不足以相互區分。紅外光譜法具有高度的專屬性,是有機化合物領域定性分析時廣泛應用的方法。在藥品檢
一、產生紅外吸收的條件根據量子力學,分子內部原子間的相對振動和分子本身轉動所需的能量是量子化的,也就是說,從一個能態躍遷到另一個能態不是連續的,當照射于分子的光能 (E,E=hυ,h為普朗克常數,υ為光的頻率) 剛好等于基態第一振動或轉動能量的差值 (△E=E1- E0) 時,則分子便可吸收光能量,
化學中經常用紅外光譜來分析溶液的組成和變化,因為某些分子基團有紅外特征指紋。問題是,溶劑和溶質的峰常常疊在一起,分析起來甚是棘手。所以,我們可以借助于分子動力學模擬來模擬溶劑的紅外光譜,以便幫助分析整個溶液的紅外光譜。 要想計算一種物質的紅外光譜,最簡單的方法是用量子化學計算氣相中的一個單分子
紅外光譜儀的使用及固體、液體樣品的紅外光譜分析 一、實驗目的 1.了解AVATAR-360 FT-IR光譜儀的使用方法; 2.學習固體樣品壓片制樣的方法; 3.學習用ATR附件測定液體化合物紅外光譜的方法; 4.測定季戊四醇和環己酮的紅外光譜,了解如何從紅外光譜圖中識別基團以及如何從這
分析測試百科網訊 光譜技術已邁過百年歷史長河,中國的光譜分析技術亦可追溯到上世紀50年代,今日中國的光譜技術已從國際上“跟跑”躍升到部分領域領跑的地位。在這背后,光譜研究領域的老中青三代科學家,克服了嚴峻的挑戰、付出了辛勤的汗水。伴隨著將在成都召開的第21屆全國分子光譜學學術會議暨2
利用紅外吸收光譜進行有機化合物定性分析可分為兩個方面:一是官能團定性分析,主要依據紅外吸收光譜的特征頻率來鑒別含有哪些官能團,以確定未知化合物的類別;二是結構分析,即利用紅外吸收光譜提供的信息,結合未知物的各種性質和其它結構分析手段(如紫外吸收光譜、核磁共振波譜、質譜)提供的信息,來確定未知物的
自1940年商品紅外光譜儀問世以來,在有機化學研究中得到廣泛的應用。到70年代,傅立葉變換紅外光譜 (FTIR) 實驗技術進入現代化學家的實驗室,成為結構分析的重要工具。它以高靈敏度、高分辨率、快速掃描、聯機操作和高度計算機化的全新面貌使經典的紅外光譜技術再獲新生。 紅外光譜作為結構分析的重要
分析測試百科網訊 2018年11月25日,由北京科學儀器裝備協作服務中心主辦、首都科技條件平臺北京大學研發實驗服務基地承辦、首都科技條件平臺生物醫藥領域中心、首都科技條件平臺清華大學研發實驗服務基地協辦的“紅外光譜技術培訓交流會”在華騰科技大廈隆重召開。本次會議共有50余人參與。分析測試百科網作
日前,MarketsandMarkets發布了一份報告,分析研究了太赫茲和紅外光譜市場發展的主要驅動力,面臨的瓶頸、挑戰、機遇等。 太赫茲光譜主要應用于半導體、國土安全、研發以及非破壞性測試領域。2015年,半導體領域估計占太赫茲光譜市場的主要份額。預計2020年全球太赫茲市場規模將達到5253萬
分析測試百科網訊 光譜技術已邁過百年歷史長河,中國的光譜分析技術亦可追溯到上世紀50年代,今日中國的光譜技術已從國際上“跟跑”躍升到部分領域領跑的地位。在這背后,光譜研究領域的老中青三代科學家,克服了嚴峻的挑戰、付出了辛勤的汗水。伴隨著將在成都召開的第21屆全國分子光譜學學術會議暨2020年光譜
1. 紅外光譜的分區 通常將紅外光譜分為三個區域:近紅外區(0.75~2.5μm)、中紅外區(2.5~25μm)和遠紅外區(25~300μm)。一般說來,近紅外光譜是由分子的倍頻、合頻產生的;中紅外光譜屬于分子的基頻振動光譜;遠紅外光譜則屬于分子的轉動光譜和某些基團的振動光譜。 由于絕大多數
紅外光譜(infrared absorption spectrum ,IR)又稱分子振動轉動光譜,屬分子吸收光譜。樣品受到頻率連續變化的紅外光照射時,分子吸收其中一些頻率的輻射, 使振-轉能級從基態躍遷到激發態,相應于這些區域的透射光強減弱,記錄百分透過率T%對波數或波長的曲線,即紅外光譜。
紅外光譜儀用紅外光譜法進行藥物分析時具有多樣性,可根據被測物質的性質靈活應用,而且無論是固態、液態或是氣體,紅外光譜法都可利用自身的技術進行分析,因此拓寬了紅外光譜儀的定量分析。同時,紅外光譜法不需要對樣品進行繁瑣的前處理過程,對樣品可達到無損傷、非破壞,也大大的突出了它較其他定量方法的優越性。另外