一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散射光譜是分子的振動-轉動光譜。用遠紅外光波照射分子時,只會引起分子中轉動能級的躍遷,得到純轉動光譜。......閱讀全文
不影響可視性的激光保護拉曼激光安全眼鏡能提供出色的激光防護,同時又不會犧牲眼鏡的可視性或舒適度。這款眼鏡適合直接觀測和漫觀測,符合EN207標準并通過了CE認證,采用吸收染料制成,能最大限度提升顏色識別度和可見光透射度(VLT)。可提供適合各種拉曼激光的型號,包括532nm、638nm、785nm、
拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。定義:拉曼光譜法是研究化合物分子受
拉曼光譜法是研究化合物分子受光照射后所產生的散射,散射光與入射光能級差和化合物振動頻率、轉動頻率的關系的分析方法。 與紅外光譜類似,拉曼光譜是一種振動光譜技術。所不同的是,前者與分子振動時偶極矩變化相關,而拉曼效應則是分子極化率改變的結果,被測量的是非彈性的散射輻。 激光拉曼光譜原理:
激光拉曼光譜儀是一個集合了激光光譜學、精密機械和微電子系統的綜合測量體系。其最終結果是獲得散射介質在一定方向上具有一定偏振態的散射光強隨頻率分布的譜圖。 激光拉曼光譜儀分析是一種非破壞性的微區分析手段,液體、粉末及各種固體樣品均不需特殊處理即可用于拉曼光譜的測定。拉曼光譜可以單獨,或與其他技術(如X
一定波長的電磁波作用于被研究物質的分子,引起分子相應能級的躍遷,產生分子吸收光譜。引起分子電子能級躍遷的光譜稱電子吸收光譜,其波長位于紫外~可見光區,故稱紫外-可見光譜。電子能級躍遷的同時伴有振動能級和轉動能級的躍遷。引起分子振動能級躍遷的光譜稱振動光譜,振動能級躍遷的同時伴有轉動能級的躍遷。拉曼散
拉曼光譜能夠準確地測定水合物中不同的籠中的氣體分子的拉曼振動強度,且拉曼強度與分子的數量成正比。由于水合物中不同類型的籠子的大小不同,氣體分子與組成籠子的水分子之間的作用力不同,故在不同籠中的分子的拉曼位移是不同的。由于I型水合物的大籠(51262)數量是小籠(512)的3倍,Ⅱ型水合物的大籠(51
拉曼光譜儀按照激發光源與分光系統的不同可分為兩大類:色散型拉曼光譜儀 (簡稱激光拉曼) 和傅里葉變換拉曼光譜儀 (簡稱傅變拉曼)。前者采用短波的可見光激光器激發、光柵分光系統,近年向著更短的紫外激光器發展;后者則采用長波的近紅外激光器激發、邁克爾遜干涉儀調制分光等技術。激光拉曼和傅變拉曼由于在儀器的
不同波段激光優缺點理論上,紫外拉曼光譜和可見光拉曼光譜沒有什么不同之處。但對于某些特定樣品來說,紫外激光與樣品相互作用的方式與可見激光不同,如表2中示。此外,紫外和近紅外都可抑制熒光但是原理上是有差別的。如圖2所示,因為在紫外激發下拉曼信號和熒光信號在不同的光譜區域,不會受到干擾。而使用可見激光激發
摘 要 對湖北、安徽地區綠松石進行了激光拉曼光譜測試分析。結果表明, 綠松石中H2O , OH - 及PO3 -4的基團振動是導致其激光拉曼光譜形成的主要原因。3 510~3 440 cm- 1 的譜峰是由ν(OH) 伸縮振動所致,其中ν(OH) 振動導致的強拉曼特征譜峰在3 470 cm- 1附近
一、拉曼散射的發展歷史1928年,印度物理學家拉曼用水銀燈照射苯液體,發現了新的輻射譜線:在入射光頻率ω0的兩邊出現呈對稱分布的,頻率為ω0-ω和ω0+ω的明銳邊帶,這是屬于一種新的分子輻射,稱為拉曼散射,其中ω是介質的元激發頻率。拉曼因發現這一新的分子輻射和所取得的許多光散射研究成果而獲得了193