多學科交互,深度繪制細胞圖譜
大多數人類疾病實質上是細胞故障的產物。但要了解細胞的哪些部分出錯會導致疾病,科學家首先需要對細胞有完整的了解。美國加州大學圣地亞哥分校醫學院的研究人員及其合作者在24日發表于《自然》雜志上的論文中,介紹了尺度集成細胞(MuSIC)技術,這是一種結合了顯微鏡、生物化學和人工智能的技術,揭示了以前未知的細胞成分,或為人類發育和疾病提供新線索。 “如果你想象一個細胞,你可能會在細胞生物學課本上畫出五顏六色的圖,上面有線粒體、內質網和細胞核。但你以為這就結束了嗎?絕對不是。”美國加州大學圣地亞哥分校醫學院和摩斯癌癥中心教授特雷·依德克博士說,“科學家們早就意識到這點了,但現在我們終于有辦法更深入地進行研究了。” 在這項初步研究中,MuSIC揭示了人類腎臟細胞系中包含的大約70種成分,其中一半是我們以前從未見過的。研究還確定了一種新的結合RNA的蛋白質復合物。該復合物可能參與重要的細胞剪接機制,這一機制使基因能夠翻譯成蛋白質,并幫......閱讀全文
活細胞成像顯微鏡
活細胞成像顯微鏡是一種用于生物學領域的分析儀器,于2012年3月15日啟用。 技術指標 固態光源SSI(含7條激發譜線),高精度電動載物臺(X、Y:20nm,Z:5nm),CalSnapHQ2 CCD.EMCCD.濕控及CO2系統裝置,自動對焦裝置(焦距時間100ms,精度25nm)。10×
基于尺度集成細胞(MuSIC)技術發現新的胞內蛋白
近期,美國科學家開發了一種結合顯微鏡、生物化學和人工智能(AI)的技術——尺度集成細胞(MuSIC)技術,實現了直接從細胞顯微鏡圖像繪制細胞圖譜,從而發現了大量未知的胞內蛋白。研究成果發表在《Nature》期刊,標題為“A multi-scale map of cell structure fu
多學科交互,深度繪制細胞圖譜
大多數人類疾病實質上是細胞故障的產物。但要了解細胞的哪些部分出錯會導致疾病,科學家首先需要對細胞有完整的了解。美國加州大學圣地亞哥分校醫學院的研究人員及其合作者在24日發表于《自然》雜志上的論文中,介紹了尺度集成細胞(MuSIC)技術,這是一種結合了顯微鏡、生物化學和人工智能的技術,揭示了以前未
人工智能技術揭示前所未知細胞成分
科技日報北京11月24日電 (實習記者 張佳欣)大多數人類疾病實質上是細胞故障的產物。但要了解細胞的哪些部分出錯會導致疾病,科學家首先需要對細胞有完整的了解。美國加州大學圣地亞哥分校醫學院的研究人員及其合作者在24日發表于《自然》雜志上的論文中,介紹了尺度集成細胞(MuSIC)技術,這是一種結合
活細胞成像用哪種顯微鏡
活細胞成像可以選擇共聚焦顯微鏡,共聚焦與傳統顯微鏡的原理差別在于照明方式不同:傳統顯微鏡是一次性照明整個視野中的樣品,因此可以用眼睛直接觀察或者用CCD獲取圖像,沒有時間延遲;而共聚焦顯微鏡是逐點成像,無法用CCD獲取圖像,只能用探測器收集每個象素點的信號,再通過軟件重構圖像,有一定的時間延遲。共聚
人工智能技術揭示前所未知細胞成分
科技日報北京11月24日電 (實習記者 張佳欣)大多數人類疾病實質上是細胞故障的產物。但要了解細胞的哪些部分出錯會導致疾病,科學家首先需要對細胞有完整的了解。美國加州大學圣地亞哥分校醫學院的研究人員及其合作者在24日發表于《自然》雜志上的論文中,介紹了尺度集成細胞(MuSIC)技術,這是一種結合了顯
前沿顯微成像技術專題——超分辨顯微成像(2)
上一期我們為大家介紹了幾種主要的單分子定位超分辨顯微成像技術,還留下了一些問題,比如它的分辨率是由什么決定的?獲得的大量圖像數據如何進行重構?本期我們就來為大家解答這些問題。單分子定位超分辨顯微成像的分辨率單分子定位超分辨顯微成像的分辨率主要由兩個因素決定:定位精度和分子密度。定位精度是目標分子在橫
前沿顯微成像技術專題——超分辨顯微成像(1)
從16世紀末開始,科學家們就一直使用光學顯微鏡探索復雜的微觀生物世界。然而,傳統的光學顯微由于光學衍射極限的限制,橫向分辨率止步于 200 nm左右,軸向分辨率止步于500 nm,無法對更小的生物分子和結構進行觀察。突破光學衍射極限,一直是科學家們夢想和追求的目標。雖然隨著掃描電鏡、掃描隧道顯微鏡及
顯微鏡對于活細胞成像有什么作用
使用現在已開發的各種熒光蛋白和多色探針幾乎可以標記任何分子。 對囊泡、細胞器、細胞和組織中的蛋白質動力學成像的能力為了解細胞在健康和疾病狀態下如何工作提供了新的洞察力。 這些包括有絲分裂、胚胎發育和細胞骨架變化等過程的時空動態。研究活細胞時,常見的障礙包括光毒性和光損傷。 要捕捉快速的生物過程,關鍵
顯微鏡對于活細胞成像有什么作用
使用現在已開發的各種熒光蛋白和多色探針幾乎可以標記任何分子。 對囊泡、細胞器、細胞和組織中的蛋白質動力學成像的能力為了解細胞在健康和疾病狀態下如何工作提供了新的洞察力。 這些包括有絲分裂、胚胎發育和細胞骨架變化等過程的時空動態。研究活細胞時,常見的障礙包括光毒性和光損傷。 要捕捉快速的生物過程,關鍵
顯微成像技術在干細胞研究中的應用
干細胞涉及到個體發育、器官移植、延緩衰老、癌癥治療等方方面面。單個的干細胞是如何分裂、分化成新的細胞、組織或器官呢?在成體中,干細胞又是如何完成細胞修復更新的使命呢?在下面的文章中,我們將介紹如何借助共聚焦、雙光子等顯微成像分析技術一一解決在干細胞研究中的這些問題。激光共聚焦掃描顯微鏡可以精確可控的
顯微鏡成像因素
由于客觀條件,任何光學系統都不能生成理論上理想的像,各種相差的存在影響了成像質量。下面分別簡要介紹各種相差。?1、色差?色差是透鏡成像的一個嚴重缺陷,發生在多色光為光源的情況下,單色光不產生色差。白光由紅 橙 黃 綠 青 藍 紫 七種組成,各種光的波長不同 ,所以在通過透鏡時的折射率也不同,這樣物方
顯微鏡成像原理
其實普通的光學顯微鏡是根據凸透鏡的成像原理,要經過凸透鏡的兩次成像.第一次先經過物鏡(凸透鏡1)成像,這時候的物體應該在物鏡(凸透鏡1)的一倍焦距和兩倍焦距之間,根據物理學的原理,成的應該是放大的倒立的實像.而后以第一次成的物像作為“物體”,經過目鏡的第二次成像.由于我們觀察的時候是在目鏡的另外一側
顯微鏡成像原理
??? 顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進入原子時代的標志。主要用于放大微小物體成為人的肉眼所能看到的儀器。顯微鏡分光學顯微鏡和電子顯微鏡。顯微鏡成像原理:????? 顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸
多光子顯微鏡成像技術:雙光子顯微鏡角膜成像
角膜提供了眼睛的大部分折射能力,由5層組成(圖1),從外到內依次是上皮層,鮑曼層、基質、角膜后彈力層(間質膜)、內皮層。 wx_article_20200815180121_819doe.jpg 圖1 角膜的組織學結構 上皮層負責阻擋異物落入角膜,厚約50μm,由三
多光子顯微鏡成像技術:雙光子顯微鏡角膜成像
角膜提供了眼睛的大部分折射能力,由5層組成(圖1),從外到內依次是上皮層,鮑曼層、基質、角膜后彈力層(間質膜)、內皮層。圖1 角膜的組織學結構上皮層負責阻擋異物落入角膜,厚約50μm,由三種細胞構成,從外到內依次是表層細胞、翼細胞和基底細胞。只有基底細胞可進行有絲分裂和分化,基底細胞的補充是由從角膜
計算顯微成像算法-使活細胞光顯微分辨率達60納米
近日,哈爾濱工業大學(以下簡稱哈工大)儀器學院現代顯微儀器研究所在光學超分辨顯微成像技術領域取得突破性進展。研究團隊在低光毒性條件下,把結構光顯微鏡的分辨率從110納米提高到60納米,實現了長時程、超快速、活細胞超分辨成像。11月16日,研究成果在線發表于國際權威雜志《自然·生物技術》。 顯微
【精彩回顧】聚焦細胞多維顯微成像,徠卡衛星會圓滿落幕
2023年4月10-14日,“中國細胞生物學學會第十八次會員代表大會暨 2023 年全國學術大會?蘇州”在江蘇省蘇州市國際博覽中心舉辦。本次會議邀請眾多細胞生物學專家,緊密圍繞細胞生物學及其相關領域基礎研究、前沿技術、臨床應用、產業發展等方面,打造近30場主題論壇及專題活動,充分展示細胞生物學及
淺談細胞成像
2018082457566652.JPG 許多科學研究人員通過加入特定化合物刺激細胞后繼而來觀察細胞的 2D 或 3D 結構變化,借此來闡釋復雜的細胞內信號通路變化。科學研究者利用新的細胞成像和分析技術,大大提升了他們對未知領域的理解水平。 擁有一臺低成本、高效率、高通量檢測分
淺談細胞成像
許多科學研究人員通過加入特定化合物刺激細胞后繼而來觀察細胞的 2D 或 3D 結構變化,借此來闡釋復雜的細胞內信號通路變化。科學研究者利用新的細胞成像和分析技術,大大提升了他們對未知領域的理解水平。 擁有一臺低成本、高效率、高通量檢測分析儀器,例如 ImageXpress? 細胞成像分析系統
顯微鏡的成像原理
光學顯微鏡光學顯微鏡的原理光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影儀的鏡頭,物體通過物鏡成倒立、放大的實像。目鏡相當于普通的放大鏡,該實像又通過目鏡成正立、放大的虛像。經顯微鏡到人眼的物體都成倒立放大的虛像
顯微鏡的成像原理
顯微鏡是利用凸透鏡的放大成像原理,將人眼不能分辨的微小物體放大到人眼能分辨的尺寸,其主要是增大近處微小物體對眼睛的張角(視角大的物體在視網膜上成像大),用角放大率M表示它們的放大本領。因同一件物體對眼睛的張角與物體離眼睛的距離有關,所以一般規定像離眼睛距離為25厘米(明視距離)處的放大率為儀器的放大
徠卡顯微鏡成像系統
徠卡生物顯微鏡物鏡是zui重要的成像透鏡,常被認為是電鏡的心臟。物鏡的像差也是各級成像透鏡中影響zui大考.所以對物鏡的要求是盡量減小像差,尤其是球差、色差、衍射差和像散。因為它們決定了電鏡的分辨宰。研究表明,球差系數e和色差系數q近似等于透鏡的焦距/*因此為提高分辨率,應該減小物鏡的焦距;為了實現
顯微鏡的成像原理
顯微鏡是利用凸透鏡的放大成像原理,將人眼不能分辨的微小物體放大到人眼能分辨的尺寸,其主要是增大近處微小物體對眼睛的張角(視角大的物體在視網膜上成像大),用角放大率M表示它們的放大本領。因同一件物體對眼睛的張角與物體離眼睛的距離有關,所以一般規定像離眼睛距離為25厘米(明視距離)處的放大率為儀器的放大
光學顯微鏡成像原理
學生用的顯微鏡是反像,上下左右與實際物體正好相反。物鏡放大率乘以目鏡放大率就是總放大倍數。
金相顯微鏡成像原理
當把待觀察物體放在物鏡焦點外側靠近焦點處時,在物鏡后所成的實像恰在目鏡焦點內側靠近焦點處,經目鏡再次放大成一虛像。觀察到的是經兩次放大后的倒立虛像。
光學顯微鏡成像原理
??顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進入原子時代的標志。主要用于放大微小物體成為人的肉眼所能看到的儀器。光學顯微鏡成像原理:???????光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影
顯微鏡的成像過程
倒置與正置顯微鏡的區別1.顯微鏡的成像過程:光源(傳統顯微鏡為自然光源,現多為人工光源)通過反光鏡再到光圈投射到被檢物上,北京物反射光源后光學穿過物鏡,經過折射在鏡頭內形成物體放大的實像,再通過目鏡把通過物鏡的像進一步放大zui終進入人眼觀察。2.顯微鏡放大倍率的計算:顯微鏡實際放大倍數為物鏡的放大
顯微熒光成像相機選購必備
眾所周知,顯微熒光成像是一種相對特殊的成像研究,如果說一般的顯微成像拍攝還可以用普通的相機,那熒光成像確是一定要用專業的冷CCD相機才可以的。鑒于熒光成像光源一般較弱,要想的到良好的顯微圖片,還真不是一件容易的事。對于需要用到顯微熒光成像的用戶,建議是一定要買一款制冷的CCD相機,相對于不制冷的CC
顯微鏡的成像原理
光學顯微鏡光學顯微鏡的原理光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影儀的鏡頭,物體通過物鏡成倒立、放大的實像。目鏡相當于普通的放大鏡,該實像又通過目鏡成正立、放大的虛像。經顯微鏡到人眼的物體都成倒立放大的虛像