工業大規模電解水制氫主要采用堿性電解水制氫技術,其制氫工藝簡單,產品純度較高,是頗具潛力的大規模制氫技術。然而,超高電流下,超低過電位與低成本之間的權衡仍是工業電解水制氫的挑戰。在該研究領域,計算電化學方法、機器學習、電化學實驗表征緊密結合,為設計高活性析氫電催化劑奠定了基礎。 近日,中國科學院上海硅酸鹽研究所研究員劉建軍團隊與復旦大學教授葉明新、沈劍鋒團隊合作,提出了“聚陰離子摻雜誘導亞穩相催化”的催化劑結構設計策略,通過磷酸根摻雜亞穩相β-NiMoO4激活費米能級處活性電子態,有效降低堿性電解質水分解生成H*能壘,進一步促使H*耦合生成H2脫附,表現出最佳的氫吸附自由能(-0.046eV),高效提升催化劑本征穩定性和活性。研究發現,磷酸鹽取代的β-NiMoO4在1000mAcm-2的超高工業電流密度下保持200h的長期穩定,過電位僅為-210mV。相關成果發表在Nature Communications上。 基于“亞......閱讀全文
構建電催化劑的元素。根據其物理和化學性質,大致將這些元素分為三組:①貴金屬鉑(Pt)——目前常見的貴金屬HER電催化劑;②用于構建非貴金屬電催化劑的過渡金屬元素,主要包括鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鉬(Mo)和鎢(W);③用于構建非貴金屬電催化劑的非金屬元素,主要包括硼(B)
中國科學院大連化學物理研究所韓洪憲研究員和李燦院士團隊與日本理化學研究所合作,研發出一種可在強酸條件下長壽命電催化分解水的廉價電催化劑,并有望在大規模可再生能源制氫技術中應用。相關研究成果日前發表在《德國應用化學》上。 將太陽能轉化為俗稱“液態陽光”的“太陽燃料”,是應對未來化石燃料枯竭和氣候
中國科學院大連化學物理研究所韓洪憲研究員和李燦院士團隊與日本理化學研究所合作,研發出一種可在強酸條件下長壽命電催化分解水的廉價電催化劑,并有望在大規模可再生能源制氫技術中應用。相關研究成果日前發表在《德國應用化學》上。 將太陽能轉化為俗稱“液態陽光”的“太陽燃料”,是應對未來化石燃料枯竭和氣候
金屬碳化物HER 氫氣是重要的清潔能源,具有來源廣、能量密度高、無污染等優點。電解水制氫是高效、綠色的制氫途徑,但嚴重依賴貴金屬Pt催化劑,亟需發展經濟、高效的非貴金屬電催化劑。過渡金屬碳化物具有類鉑的電子性質和催化行為,是一種潛在的析氫電催化劑。近年來,相關研究工作通過合理的設計策略,調控并
近期,中國科學院合肥物質科學研究員固體物理研究所納米材料與器件技術研究部孟國文研究員課題組與韓國浦項科技大學合作,在過渡金屬基催化劑的設計合成及其全電解水制氫方面取得新進展,通過優化設計與精準調控,在碳纖維布電極上原位生長制備單分散、超小尺寸過渡金屬磷化物納米晶均勻負載的氮摻雜碳分級納米片陣列,
法國國家科研中心日前發表公報說,該中心參與的一個研究小組發明一種新試劑,能在試管內激活微生物體內的一種酶,這種酶能催化電解水制氫過程,降低電解水制氫成本。 這種試劑由一種與氫化酶活性中心相似的仿生化合物和蛋白質組成,能夠與不具有活性的氫化酶發生反應,并將其仿生部分轉移至氫化酶中,從而激活氫
中科院化學所分子納米結構與納米技術重點實驗室胡勁松課題組在氫能的清潔獲取與應用方面開展了系列研究,并開發出新型高效電解水催化劑。相關成果日前發表于《美國化學會志》等雜志。 據了解,限制電解水制氫大規模應用的最重要瓶頸是如何大幅降低其電能消耗,從而大幅降低制氫成本。其關鍵是如何有效降低電極上析氧
利用太陽能和風能發電,并用所獲得的電能通過電解水生產氫氣,是重要的儲存可再生能源的技術手段。目前使用的加速電解水反應的催化劑有兩類,一種催化效率高但需要使用貴金屬銥材料,致使價格昂貴,另一類價格較低但催化效率不高。 瑞士保羅謝爾研究所(PSI)最近成功開發出一種可用于電解水獲取氫氣的高效納米催
氫能是一種理想的能源載體,開發大規模、廉價、清潔、高效的制氫技術是氫能有效利用的關鍵。電解水由于環境友好、產品純度高以及無碳排放而成為具有應用前景的綠色制氫方法之一。限制電解水制氫大規模應用的最重要瓶頸是如何大幅降低其電能消耗,因而大幅降低制氫成本。其關鍵是如何有效降低電極上析氧反應(OER)和