火焰原子吸收屬于吸收光譜,氫化法原子熒光屬于發射光譜。兩者原理不同,可檢測元素不同。不過需要注意近些年發展的火焰原子熒光儀器。火焰原子熒光也可以檢測金、銀、銅等元素。并且在金元素的檢測上,靈敏度和穩定性優于原子吸收。例如市面上的礦山測金儀就屬于火焰原子熒光。不過原子吸收應用范圍更廣泛,因為可檢測元素跟多。比如鉀鈉鈣鎂鐵等。氫化法原子熒光主要檢測砷汞元素。火焰原子熒光應用最多的就是測金儀......閱讀全文
1802年,英國化學家沃拉斯頓(有譯為伍朗斯頓W.H.Wollaston)注意到光譜并非連續的,其中有7條黑線,他天真地將它們當做是顏色的自然邊界。 原子蒸氣對其原子共振輻射吸收的現象。 原子吸收現象發現于19世紀; 1814年,弗朗荷費(有譯為夫勞霍弗J.Fraunhofer)用更精密的方
原理:通過原子化器將待測試樣原子化,待測原子吸收待測元素空心陰極燈的光,從而使用檢測器檢測到的能量變低,從而得到吸光度。吸光度與待測元素的濃度成正比。
區別: (1)效率高:石墨爐的原子化效率接近100%,而法的原子化效率只有1%左右. (2)靈敏度高:用石墨爐進行原子化時,在吸收區內的較長 石墨爐是利用在封閉空間內發生原子化,效率高,靈敏度高,可以達到ppb級別,但背景干擾大,做樣時間長; 是樣品后噴入進行原子化,測樣時間短,成本低,
在原子吸收分光光度計上使用的光源一般有: 空心陰極燈(hollow cathode lamp,HCL)、無極放電燈、蒸氣放電燈和激光光 源燈。其中應用最廣泛的是空心陰極燈和無極放電燈。 光源的作用是發射待測元素的特征光譜,供測量用。為了保證峰值吸收的測量, 要求光源必須能發射出比吸收線寬度更窄的銳
一種以色譜作分離手段,原子吸收為金屬特效檢測 器的儀器聯用分析技術。 樣品經色譜柱分離后,經適當的接 口引人原子吸收檢測器,從而對金屬化學形態進行測定。它綜合了色譜分離效果好和原子吸收對金屬元素靈敏特效的優點。因而具有靈敏度高、選擇性強的特點,是金屬化學形態分 析的技術之一,色譜和火焰原子吸收分
原子吸收光譜法是一種元素定量分析方法,它可以用于測定60多種金屬元素和一些非金屬元素的含量。 定量分析方法: 一、標準曲線法: 配制一系列不同濃度的待測元素標準溶液,在選定的條件下分別測定其吸光度,以測得的吸光度A為縱坐標,濃度為橫坐標作圖,得到標準曲線。再在相同條件下測定試液的吸光度,由標
待測元素燈發出的特征譜線通過原子蒸氣時,被待測元素的基態原子所吸收。可通過測定輻射光強度減弱的程度,得出樣品中待測元素的含量。
待測元素燈發出的特征譜線通過原子蒸氣時,被待測元素的基態原子所吸收。可通過測定輻射光強度減弱的程度,得出樣品中待測元素的含量。
測定汞含量的一種方法,1972年R.A.卡爾等已將此法用來測定海水中汞。 該方法 海水樣品經硫酸-過硫酸鉀消化, 將無機汞化合物和有機汞化合物轉變成可溶性二價汞離子,然后于酸性介質中在還原劑作用下(SnCl2)將Hg2+還原為金屬Hg。 Hg2++Sn2+→Hg0+Sn4+ 用凈化空氣做載氣
產品組成 原子吸收光譜儀由光源、原子化器、單色器和檢測器等四部分組成,如圖2-1所示: 圖2-1 火焰原子吸收光譜儀結構 2.1光源 光源是原子吸收光譜儀的重要組成部分,它的性能指標直接影響分析的檢出限、精密度及穩定性等性能。光源的作用是發射被測元素的特征共振輻射。對光源的基本要求:發射的