磁共振magneticresonance(MRI);固體在恒定磁場和高頻交變電磁場的共同作用下,在某一頻率附近產生對高頻電磁場的共振吸收現象。在恒定外磁場作用下固體發生磁化,固體中的元磁矩均要繞外磁場進動。由于存在阻尼,這種進動很快衰減掉。但若在垂直于外磁場的方向上加一高頻電磁場,當其頻率與進動頻率一致時,就會從交變電磁場中吸收能量以維持其進動,固體對入射的高頻電磁場能量在上述頻率處產生一個共振吸收峰。若產生磁共振的磁矩是順磁體中的原子(或離子)磁矩,則稱為順磁共振;若磁矩是原子核的自旋磁矩,則稱為核磁共振。若磁矩為鐵磁體中的電子自旋磁矩,則稱為鐵磁共振。核磁矩比電子磁矩約小3個數量級,故核磁共振的頻率和靈敏度比順磁共振低得多;同理,弱磁物質的磁共振靈敏度又比強磁物質低。從量子力學觀點看,在外磁場作用下電子和原子核的磁矩是空間量子化的,相應地具有離散能級。當外加高頻電磁場的能量子hv等于能級間距時,電子或原子核就從高頻電磁場吸收......閱讀全文
發現病變 核磁共振成像是一種利用核磁共振原理的最新醫學影像新技術,對腦、甲狀腺、肝、膽、脾、腎、胰、腎上腺、子宮、卵巢、前列腺等實質器官以及心臟和大血管有絕佳的診斷功能。與其他輔助檢查手段相比,核磁共振具有成像參數多、掃描速度快、組織分辨率高和圖像更清晰等優點,可幫助醫生“看見”不易察覺的早期
核磁共振(nuclear magnetic resonance, NMR)是磁矩不為零的原子核,在外磁場作用自旋能級發生蔡曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。并不是是所有原子核都能產生這種現象,原子核能產生核磁共振現象是因為具有核自旋。原子核自旋產生磁矩,當核磁矩處于靜止外磁場中時產生進
(一)核有磁性 1.核由質子和中子組成 2.質子帶正電,中子不帶電 3.所以,原子核帶正電的 4.另外,有些核具有內秉角動量(自旋) 5.奇數核子 6.奇數原子序數,偶數核子 因而核有磁性 磁矩 描述磁場強度與方向的矢量 自旋角動量 旋磁比,每個核都有一特定的值。有正有負,核
NMR(Nuclear Magnetic Resonance)為核磁共振。是磁矩不為零的原子核,在外磁場作用下自旋能級發生蔡曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。核磁共振波譜學是光譜學的一個分支,其共振頻率在射頻波段,相應的躍遷是核自旋在核蔡曼能級上的躍遷。基本原理自旋量子數I不為零的核與
1945年Bloch和Purcell分別領導兩個小組同時獨立地觀察到核磁共振(Nuclear Magnetic Resonance, NMR),他們二人因此榮獲1952年諾貝爾物理獎。1991年諾貝爾化學獎授予R.R. Ernst教授,以表彰他對二維核磁共振理論及傅里葉變換核磁共振的貢獻。這兩次諾貝
1.原子核的自旋 圖 核磁共振原理圖核磁共振主要是由原子核的自旋運動引起的。不同的原子 核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況:I為零的原子核 可以看作是一種非自旋的球體;I為1/2的原子核可以看作是一種電荷分
1.原子核在磁場中的能級分裂質子有自旋,是微觀磁矩,磁矩的方向與旋轉軸重合。在磁場中,這種微觀磁矩的兩種自旋態的取向不同,能量不再相等,磁矩與磁場同向平行的自旋態能級低于磁矩與磁場反向平行的自旋態,兩種自旋態間的能量差△E與磁場強度H0成正比:?式中,h為普朗克常數;H0為磁場的磁場強度,單位為T(
二十世紀后半葉,NMR技術和儀器發展十分快速,從永磁到超導,從60MHz到800MHz的NMR譜儀磁體的磁場差不多每五年提高一點五倍,這是被NMR在有機結構分析和醫療診斷上特有功能所促進的。現在有機化學研究中NMR已經成為分析常規測試手段,同樣,在醫療上MRI(核磁共振成像儀器)亦成為某些疾病的診斷
核磁共振(Nuclear Magnetic Resonance),是指具有磁矩的原子核在靜磁場中,受電磁波(通常為射頻電磁振蕩波RF)激發,而產生的共振躍遷現象。1945年12月,美國哈佛大學珀塞爾(E. M. Purcell)等人,首先觀察到石臘樣品中質子(即氫原子核)的核磁共振吸收信號。1946
NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a