在七十年代以后,伴隨著第二代酶——固定化酶及其相關技術的產生,酶工程才算真正登上了歷史舞臺。固定化酶正日益成為工業生產的主力軍,在化工醫藥、輕工食品、環境保護等領域發揮著巨大的作用。不僅如此,還產生了威力更大的第三代酶,它是包括輔助因子再生系統在內的固定化多酶系統,它正在成為酶工程應用的主角。 我們知道,酶在生物體內的含量是有限的,不管是哪種酶,在細胞中的濃度都不會是很高的,這也是出于生物機體生命活動平衡調節的需要。可是這樣一來,就限制了直接利用天然酶更有效地解決很多化學反應的可能性。 利用基因工程的方法可以解決這一難題。......閱讀全文
在七十年代以后,伴隨著第二代酶——固定化酶及其相關技術的產生,酶工程才算真正登上了歷史舞臺。固定化酶正日益成為工業生產的主力軍,在化工醫藥、輕工食品、環境保護等領域發揮著巨大的作用。不僅如此,還產生了威力更大的第三代酶,它是包括輔助因子再生系統在內的固定化多酶系統,它正在成為酶工程應用的主角。
衡器是在商品的交換過程中產生和發展的。人類最早使用的衡器是原始天平。約在公元前5000年,埃及就已使用等臂天平秤(圖1 )。它是在簡易杠桿中點設一支點,在杠桿一端(圖中右端)的盤(鉤)上放置被測物,在另一端(圖中左端)的盤上逐個放置形狀、質量一樣的物體,當這種裝置平衡時,就意味著兩邊的質量相等,
基因制取 在生物體內找到了某種有用的酶,即使含量再低,應用基因重組技術,通過基因擴增與增強表達,就可能建立高效表達特定酶制劑的基因工程菌或基因工程細胞了。把基因工程菌或基因工程細胞固定起來,就可構建成新一代的生物催化劑——固定化工程菌或固定化工程細胞了。人們也把這種新型的生物催化劑稱為基因工程
酶工程(英語:Enzyme engineering)又稱蛋白質工程學,是指工業上有目的的設置一定的反應器和反應條件,利用酶的催化功能,在一定條件下催化化學反應,生產人類需要的產品或服務于其它目的的一門應用技術。 酶工程就是將酶或者微生物細胞,動植物細胞,細胞器等在一定的生物反應裝置中,利用酶所
酶作為一種生物催化劑,已廣泛地應用于輕工業的各個生產領域。近幾十年來,隨著酶工程不斷的技術性突破,在工業、農業、醫藥衛生、能源開發及環境工程等方面的應用越來越廣泛。 1、食品加工中的應用 酶在食品工業中最大的用途是淀粉加工,其次是乳品加工、果汁加工、烘烤食品及啤酒發酵。與之有關的各種酶如淀粉
早在19世紀末,E.Goldstein在低壓放電實驗中觀察到正電荷粒子,隨后W.Wein發現正電荷粒子束在磁場中發生偏轉,這些觀察結果為質譜的誕生提供了準備。 世界上第一臺質譜儀于1912年由英國物理學家Joseph John Thomson(1906年諾貝爾物理學獎獲得者、英國劍橋大學教授)
第一階段 以蒸餾水或去離子水為進水,搭配超純凈化單元 蒸餾器耗水耗電,產水10L/H的機器,一年耗費的水電費就要近一萬元,并且在付出了財力和人力的同時還存在缺水爆炸的安全隱患。蒸餾器所得到的水還存在水質不高、水質不穩定等問題。 離子交換設備由于體型較大,則需要較大的空間來放置,而且
1879年,由德國生物學家弗萊明(altherFlemming,1843~1905年)經過實驗發現。 1883年美國學者提出了遺傳基因在染色體上的學說。 1888年正式被命名為染色體。 1902年,美國生物學家薩頓和鮑維里通過觀察細胞的減數分裂時又發現染色體是成對的,并推測基因位于染色體上
1907年,哈里森(Harrison)在無菌條件下用淋巴液作培養基,培養蛙胚神經組織存活數周,并觀察到神經細胞突起的生長過程,由此創建了蓋片覆蓋凹窩玻璃懸滴培養法,奠定了動物組織體外培養的基礎。之后,又有人將懸滴培養法改良為雙蓋片培養,提高了傳代效率并減少了污染;1923年,卡雷爾(Carrel
1800年,英國物理學家F. W.赫胥爾發現了紅外線,從此開辟了人類應用紅外技術的廣闊道路。在第二次世界大戰中,德國人用紅外變像管作為光電轉換器件,研制出了主動式夜視儀和紅外通信設備,為紅外技術的發展奠定了基礎。 二次世界大戰后,首先由美國德克薩蘭儀器公司經過近一年的探索,開發研制的第一代用于