外在膜蛋白分布在膜的內外表面,約占膜蛋白的20%~30%,主要在內表面,為水溶性蛋白,它通過離子鍵、氫鍵與膜脂分子的極性頭部相結合,或通過與內在蛋白的相互作用,間接與膜結合。 膜蛋白(左:外周膜蛋白與內在膜蛋白;右:脂錨定蛋白) 膜蛋白(左:外周膜蛋白與內在膜蛋白;右:脂錨定蛋白) 內在蛋白約占膜蛋白的70%~80%,是雙親媒性分子,可不同程度的嵌入脂雙層分子中。有的貫穿整個脂雙層,兩端暴露于膜的內外表面,這種類型的膜蛋白又稱跨膜蛋白。內在膜蛋白露出膜外的部分含較多的極性氨基酸,屬親水性,與磷脂分子的親水頭部鄰近;嵌入脂雙層內部的膜蛋白由一些非極性的氨基酸組成,與脂質分子的疏水尾部相互結合,因此與膜結合非常緊密。 據估計人類基因中,1/4~1/3基因編碼的蛋白質為內在膜蛋白。 脂錨定膜蛋白是通過與之共價相連的脂分子插入膜的脂雙分子中,從而錨定在細胞質膜上。......閱讀全文
外在膜蛋白分布在膜的內外表面,約占膜蛋白的20%~30%,主要在內表面,為水溶性蛋白,它通過離子鍵、氫鍵與膜脂分子的極性頭部相結合,或通過與內在蛋白的相互作用,間接與膜結合。 膜蛋白(左:外周膜蛋白與內在膜蛋白;右:脂錨定蛋白) 膜蛋白(左:外周膜蛋白與內在膜蛋白;右:脂錨定蛋白) 內在蛋
同種分子之間 現以HF為例說明氫鍵的形成。在HF分子中,由于F的電負性(4.0)很大,共用電子對強烈偏向F原子一邊,而H原子核外只有一個電子,其電子云向F原子偏移的結果,使得它幾乎要呈質子狀態。這個半徑很小、無內層電子的帶部分正電荷的氫原子,使附近另一個HF分子中含有負電子對并帶部分負電荷的F
植物組織培養的材料幾乎包括了植物體的各個部位,如莖尖、莖段、花瓣、根、葉、子葉、鱗莖、胚珠和花藥等。 (1)莖尖 莖尖不僅生長速度快,繁殖率高,不容易發生變異,而且莖尖培養是獲得脫毒苗木的有效途徑。因此,莖尖是植物組織培養中最常用的外植體。 (2)節間部 大部分果樹和花卉等,新梢的節間部
基因載體,即gene delivery或gene vector,是作為基因導入細胞的工具。猶如火箭能把衛星射向九天一樣,基因載體可以把目的基因送入靶細胞內,然后將目的基因釋放出來,有的目的基因還可以整合到細胞核中,從而發揮目的基因的特定功能。 1. 基因載體是把基因導入細胞的工具,它的作用是①
常用于重組膜蛋白的表達系統有真核表達系統、原核表達系統和近些年來發展的無細胞表達系統。其中以大腸桿菌(E.coli)為代表的原核表達系統因為操作簡單、成本相對低廉、遺傳背景清楚、方便同位素標記,以及有大量可利用的表達載體和宿主菌株等原因,是當下獲取重組膜蛋白的最主要途徑。對于一些膜蛋白而言,采用
膜蛋白的功能是多方面的。膜蛋白在生物體的許多生命活動中起著非常重要的作用,如細胞的增殖和分化、能量轉換、信號轉導及物質運輸等。據估計有大約60%的藥物作用靶點是膜蛋白。 膜蛋白可作為“載體”而將物質轉運進出細胞。有些膜蛋白是激素或其他化學物質的專一受體,如甲狀腺細胞上有接受來自腦垂體的促甲狀腺
納米激光粒度儀 采用動態光散射原理技術和光子相關光譜技術,因顆粒在懸浮液中做布朗運動,使得光強隨時間產生脈動,領用數字相關器技術處理脈沖信號,得到顆粒運動的擴散信息,利用Stokes-Einstein方程計算得出顆粒粒徑大小及分布。 噴霧激光粒度儀 采用Mie氏散射原理和典型的平行光路設計
1、按照轉速的大小可分為:低速離心機,高速離心機和超高速離心機; 2、按照對溫度的要求可分為:普通離心機和冷凍離心機; 3、按照轉子的不同分為:水平轉子離心機、角轉子離心機和酶標板轉子離心機; 4、按照離心機體積的大小還可以分為:落地式離心機、臺式離心機、掌上離心機等; 5、按照離心機的
CMP+分離強蔬水性蛋白、多肽混合物的層析系統,一般有去垢劑(如SDS)溶解膜蛋白后形成SDS-融膜蛋白,并由羥基磷灰石為固定相的柱子分離純化。羥基磷灰石柱具有陰離子磷酸基團(P-端),又具有陽離子鈣(C-端),與固定相結合主要決定于膜蛋白的大小、SDS 結合量有關。利用原子散射法研究cAMP的
研究膜蛋白結構的技術包括 X 射線衍射、核磁共振波譜、電子顯微鏡、原子力顯微鏡、紅外光譜和圓二色譜等。其中 X 射線衍射和核磁共振波譜技術是對膜蛋白三維結構進行研究的主要方法。尤其利用固體核磁共振技術可在接近膜蛋白的天然環境的磷脂雙分子層中研究膜蛋白的三維結構信息和動力學特征。