中子活化分析 中子活化分析在考古學中主要用來測量陶瓷器、玻璃、銀幣、銅鏡、燧石、骨頭化石等樣品中的微量元素和痕量元素,進行統計分析,尋找共同性和差異性,從而確定元素成分的演變、產地及礦源等。不同地區的陶瓷土的元素組成差異,特別是微量、痕量元素組成差異大于它們在同一陶土源不同部位的漲落。以我國古瓷研究為例,古代瓷器原料就地取材,其中所含的微量元素種類不多,一般不影響瓷器質量,但在瓷器中長期保存,因而成為各類瓷器的分辨特征。經中子活化分析不僅確定了古瓷中微量元素的古瓷窯窯系,分析了各處古窯的瓷土來源,瓷釉中元素含量的分布說明了原料配方上的差別。更重要的是利用中子活化分析的測量數據建立了各窯系、各瓷類的微量元素特征譜系,瓷類特征譜系因配料不同而形成,其中所含的元素和含量有明顯差別,如浙江龍泉窯青瓷釉的宋代和明代特征迥異。 外國學者用中子活化分析技術已積累了許多資料。通過對古陶瓷的大量數據積累從中選出地域性特征微量、痕量元素及......閱讀全文
中子活化分析 中子活化分析在考古學中主要用來測量陶瓷器、玻璃、銀幣、銅鏡、燧石、骨頭化石等樣品中的微量元素和痕量元素,進行統計分析,尋找共同性和差異性,從而確定元素成分的演變、產地及礦源等。不同地區的陶瓷土的元素組成差異,特別是微量、痕量元素組成差異大于它們在同一陶土源不同部位的漲落。以我國
發展趨勢 ①從單純的元素分析擴展到化學狀態的測定:隨著中子活化分析應用領域的擴大,不僅需要測定樣品中元素的含量,而且還要求深入研究元素的分布和狀態。例如,在環境科學研究中分析水中痕量元素時,增加超過濾法前處理,將水樣分解成低分子量組分、膠體、假膠體和顆粒物,再用中子活化法分別測定處于不同狀態的
中子活化分析,又稱儀器中子活化分析,是通過鑒別和測試式樣因輻照感生的放射性核素的特征輻射,進行元素和核素分析的放射分析化學方法。活化分析的基礎是核反應,以中子或質子照射試樣,引起和反應,使之活化產生輻射能,用γ射線分光儀測定光譜,根據波峰分析確定試樣成分;根據輻射能的強弱進行定量分析。一般中子源
1936年匈牙利化學家G.C.de赫維西和H.萊維用鐳-鈹中子源 (中子產額約 3×106中子/秒)輻照氧化釔試樣,通過164Dy(n,γ)165Dy反應(活化反應截面為2700靶(恩), 生成核165Dy的半衰期為2.35小時)測定了其中的鏑,定量分析結果為10-3克/克,完成了歷史上首次中子
中子是電中性的,所以當用中子輻照試樣時,中子與靶核之間不存在庫侖斥力,一般通過核力與核發生相互作用。核力是一種短程力,作用距離為10-13厘米,表現為極強的吸引力。中子接近靶核至10-13厘米時,由于核力作用,被靶核俘獲,形成復合核。復合核一般處于激發態(用*表示),壽命為10-12~10-16
NAA法特別適合考古學中的元素分析。它與其他元素分析法相比較,有許多優點: 其一,靈敏度高,準確度、精確度高。NAA法對周期表中80%以上的元素的靈敏度都很高,一般可達10-6-10-12g,其精度一般在±5%。 其二,多元素分析,它可對一個樣品同時給出幾十種元素的含量,尤其是微量元素和痕量
①從單純的元素分析擴展到化學狀態的測定:隨著中子活化分析應用領域的擴大,不僅需要測定樣品中元素的含量,而且還要求深入研究元素的分布和狀態。例如,在環境科學研究中分析水中痕量元素時,增加超過濾法前處理,將水樣分解成低分子量組分、膠體、假膠體和顆粒物,再用中子活化法分別測定處于不同狀態的元素含量。
簡史 1936年匈牙利化學家G.C.de赫維西和H.萊維用鐳-鈹中子源 (中子產額約 3×106中子/秒)輻照氧化釔試樣,通過164Dy(n,γ)165Dy反應(活化反應截面為2700靶(恩), 生成核165Dy的半衰期為2.35小時)測定了其中的鏑,定量分析結果為10-3克/克,完成了歷史上
原理 中子是電中性的,所以當用中子輻照試樣時,中子與靶核之間不存在庫侖斥力,一般通過核力與核發生相互作用。核力是一種短程力,作用距離為10-13厘米,表現為極強的吸引力。中子接近靶核至10-13厘米時,由于核力作用,被靶核俘獲,形成復合核。復合核一般處于激發態(用*表示),壽命為10-12~1
中子活化分析的靈敏度高,準確度好,污染少,適用于高純金屬、地質樣品、宇宙物質液體、固體等各類樣品中超痕量金屬的測定。特別是NAA 的無損分析特性消除了多數其它痕量分析方法中可能破壞溯源鏈的最危險的環節———樣品制備和溶解過程中可能帶來的待測元素的污染或丟失。由于活化之后的放化操作可以加入載體和反