近場光學顯微鏡的近場光學顯微鏡原理
傳統的光學顯微鏡由光學鏡頭組成,可以將物體放大至幾千倍來觀察細節,由于光波的衍射效應,無限提高放大倍數是不可能的,因為會遇到光波衍射極限這一障礙,傳統的光學顯微鏡的分辨率不能超過光波長的一半。比如,以波長λ=400nm的綠光作為光源,僅能分辨相距為200nm的兩個物體。實際應用中λ>400nm,分辨率要更低些。這是因為一般的光學觀察都在距離物體很遠的位置(>>λ)。近場光學顯微鏡根據非輻射場的探測和成像原理,能夠突破普通光學顯微鏡所受到的衍射極限,可以在超高光學分辨率下進行納米尺度光學成像與納米尺度光譜研究。近場光學顯微鏡 由探針、信號傳輸器件、掃描控制、信號處理和信號反饋等系統組成。近場產生和探測原理:入射光照射到表面上有許多微小細微結構的物體上,這些細微結構在入射光場的作用下,產生的反射波包含限制于物體表面的倏逝波和傳向遠處的傳播波。倏逝波來自于物體中的細微結構(小于波長的物體)。而傳播波則來自于物體中粗糙......閱讀全文
近場光學顯微鏡的近場光學顯微鏡原理
傳統的光學顯微鏡由光學鏡頭組成,可以將物體放大至幾千倍來觀察細節,由于光波的衍射效應,無限提高放大倍數是不可能的,因為會遇到光波衍射極限這一障礙,傳統的光學顯微鏡的分辨率不能超過光波長的一半。比如,以波長λ=400nm的綠光作為光源,僅能分辨相距為200nm的兩個物體。實際應用中λ>400nm,分辨
近場光學的近場光學顯微鏡的基本類型
? ? ? 近場光學顯微鏡 的主要目標是獲得與物體表面相距小于波長K的近場信息, 即隱失場的探測。雖然已經出現了許多不同類型的近場光學顯微儀器, 但它們有一些共同的結構。如同其他掃描探針顯微鏡( STM、AFM…), 近場光學顯微鏡包括: ( 1)探針,(2) 信號采集及處理,(3)探針-樣品間距
近場光學顯微鏡的近場光學顯微鏡的組成部分
由于光子的特性,近場光學顯微鏡在生物研究中具有許多優點:(1)超越光學衍射極限的分辨率,甚至可達到亞納米量級;(2)光學顯微技術,無侵入性,可在生物的自然狀態環境下進行觀測研究;(3)能夠觀測吸收、 反射、 熒光、 偏振對比度,透視生物樣品內部光學性質;(4)光譜學分析,對化學狀態具有高分辨率;(5
近場光學顯微鏡 原理及應用
? ? ?近場光學顯微鏡(英文名:SNOM)是根據非輻射場的探測與成像原理,能夠突破普通光學顯微鏡所受到的衍射極限,采用亞波長尺度的探針在距離樣品表面幾個納米的近場范圍進行掃描成像的技術,在近場觀測范圍內,在樣品上進行掃描而同時得到分辨率高于衍射極限的形貌像和光學像的顯微鏡。? ?近場光學顯微鏡適用
傳統光學顯微鏡與近場光學顯微鏡
? ? ? 近場光學顯微鏡是對于常規光學顯微鏡的革命。它不用光學透鏡成像,而用探針的針尖在樣品表面上方掃描獲得樣品表面的信息。分析了傳統光學顯微鏡與近場光學顯微鏡成像原理的物理本質和兩種顯微鏡系統結構的異同點。介紹了光纖探針的制作方法。重點討論了近場探測原理、光學隧道效應及非輻射場的性質。 傳統光
什么是近場光學顯微鏡?
近場光學顯微鏡(MO-SNOM)是掃描近場光學顯微鏡的一種形式。一種掃描近場光學顯微鏡(SMOM),用于可視化樣品表面的形狀和磁通量分布。用于分析磁性材料中磁光效應引起的光的偏振度的光學系統已添加到透射SNOM中。入射的激光束通過聲光調制器(AOM)以15 kHz的頻率閃爍,然后用偏振器線性偏振,然
散射式近場光學顯微鏡
? ? ? 散射式近場光學顯微鏡NeaSNOM,具有如下的特點:獨有的極高空間分辨率10nm;可適用于可見、紅外和太赫茲光譜范圍;近場振幅和相位分辨測量功能;納米尺度下,用于FTIR吸收光譜研究;極高的分辨率下,研究有機或無機樣品,整個操作僅需要常規的AFM樣品準備過程。因此,推動了等離激元研究、
掃描近場光學顯微鏡概述及應用
掃描近場光學顯微鏡(SNOM——ScanningNear-fieldOeticalMicr0SCOPP)是依據近場探測原理發展起來的一種光學掃描探針顯微(SPM)技術。其分辨率突破光學衍射極限,達到10~.200。m。在技術應用上.SNOM為單分子探測,生物結構、納米微結構的研究,半導體外陷分析及z
近場光學顯微鏡對介質的最佳分辨
? ? 與傳統的光學顯微鏡相比,近場光學顯微鏡突破了瑞利衍射極限的限制,為我們提供了納米級的分辨率.而相對于分辨率更高的掃描隧道電子顯微鏡來說,近場光學顯微鏡具有非接觸和非破壞的優點,對于有機生命體的觀測具有更高的實用價值.由于其廣泛的應用,近年來對于近場光學顯微鏡的研究在實驗和理論上都得到了較大的
散射式近場光學顯微鏡的特點及實際應用
? 散射式近場光學顯微鏡建立在基于具有先進地位的納米光學表征工具原子力顯微鏡AFM的基礎之上。s-SNOM設計具有非常優秀的性能,高度集成,全面自動化,使用靈活,為研究生產力和易用性設定了新的標準。 特別適用于硬質材料,特別是具有高反射率、高介電常數或強光學共振的材料,可以完成對所有物質納米尺度