紫外可見吸收光譜原理
紫外可見吸收光譜原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π*四種類型,各種躍遷類型所需要的能量依下列次序減小: σ→σ*>n→σ*>π→π*>n→π*由于一般紫外可見分光光度計只能提供190~850nm范圍的單色光,因此,我們只能測量n→σ*的躍遷,n→π*躍遷和部分π→π*躍遷的吸收,而對只能產生200nm以下吸收的σ→σ*的躍遷則無法測量。擴展資料:在數值上等于1mol/L的吸光物質在1cm光程中的吸光度,ε= A/CL,與入射光波長、溶液的性質及溫度有關。(1)吸光物質在特定波長和溶劑中的一個特征常數,定性的主要依據。(2)值愈大,方法的靈敏度愈高。物質的紫外吸收光譜......閱讀全文
紫外可見Hg燈配件
描述 汞燈是 USP、PH.EUR、JP、TGA、WHO、ASTM (E275-67) 及其他國際認可的測試協議推薦用于測試波長精度的一級標準物。汞基本發射線是汞的一種物理性質,因此無需追溯。由于汞發射線很窄,所以儀器精度通過了最高可用容限
紫外可見吸收光譜的紫外光譜
各種因素對吸收譜帶的影響表現為譜帶位移、譜帶強度的變化、譜帶精細結構的出現或消失等。譜帶位移包括藍移(或紫移,hypsochromic shift or blue shift))和紅移(bathochromic shift or red shift)。藍移(或紫移)指吸收峰向短波長移動,紅移指吸收峰
紫外可見漫反射光譜數據怎么轉化為紫外可見吸收光譜
如果你的樣品,沒有透射的話,那么直接用 1-R 去計算吸收就可以了
FastTrack? 紫外可見光技術
采用氙氣閃光燈的陣列式分光光度計可在幾秒內就能提供全波長范圍的光譜掃描,無需預熱,預開即用。 FastTrack 技術可顯著加快紫外可見分光光度計測量速度:具備出色光學性能的獨特設計一秒鐘內完成全譜掃描先進的耐久性氙燈用于穩定、可重復、可持續的測量堅固的設計和緊湊的布局無需移動部件始終準備好測量,無
紫外可見吸收光譜原理
紫外可見吸收光譜原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π
紫外可見溶液驗證標準品
描述 根據國際藥典指南,氧化鈥高氯酸溶液是用于光分光光度計波長準確性驗證的首選標準品。永久密封在石英比色皿中,使其可以用于深紫外范圍在 219 到 650nm 范圍呈現銳化、穩定的峰形-可以輕松的將波長與峰最大值進行關聯將每個峰的所觀察到的讀數與標準品附帶證書上的預期值做對比來進行
紫外可見吸收光譜原理
1. 紫外可見吸收光譜產生的原理紫外可見吸收光譜是由于分子(或離子)吸收紫外或者可見光(通常200-800 nm)后發生價電子的躍遷所引起的。由于電子間能級躍遷的同時總是伴隨著振動和轉動能級間的躍遷,因此紫外可見光譜呈現寬譜帶。紫外可見吸收光譜的橫坐標為波長(nm),縱坐標為吸光度。紫外可見吸收光譜
紫外可見吸收光譜原理
紫外可見吸收光譜原理:在有機化合物分子中有形成單鍵的σ電子、有形成雙鍵的π電子、有未成鍵的孤對n電子。當分子吸收一定能量的輻射能時,這些電子就會躍遷到較高的能級,此時電子所占的軌道稱為反鍵軌道,而這種電子躍遷同內部的結構有密切的關系。在紫外吸收光譜中,電子的躍遷有σ→σ*、n→σ*、π→π*和n→π
可見分光、紫外分光和紫外可見分光光度計的區別
可見分光光度計和紫外分光光度計的區別是測定波長范圍不同,一般可見光波長范圍是400~1000nm,紫外光波長范圍是200~400nm。所謂紫外可見分光光度計也就是說這個儀器可以通過更換光源形成紫外和可見的光區,能夠測定吸收峰在紫外和可見光部分的化合物。一般測定波長在200~1000nm。
紫外/可見吸收光譜測量
荷蘭Avantes公司突破了傳統分光光度計采用轉動光柵進行光譜掃描的技術,使用2048像素CCD陣列探測器和平面衍射光柵,實現了不必轉動光柵而對整個光譜的快速測量,每秒可實現900幅光譜的超高速采樣,保證了測量的準確性和重復性,同時搭配浸入式光纖探頭或流通池進行取樣,從而適用于野外測量、應急檢測、在