<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    細胞中分子之間動態相互作用的光學成像

    克服動態分辨率限制由Würzburg大學的Markus Sauer教授(Rudolf Virchow中心和生物中心)和Gerti Beliu博士(Rudolf Virchow中心)的研究小組開發的新的光開關指紋分析使光學成像與細胞中其他分子的動態相互作用。“到目前為止,還沒有一種方法能夠可靠地在10納米以下的細胞中實現結構光學分辨率。通過闡明這一屏障的潛在原因,結合新的直接標記方法,我們首次成功地實現了幾納米的細胞分辨率。這一進展使得分子功能和細胞重要成分的結構得以揭示。”Sauer報告說。單分子定位顯微鏡方法,如由Markus Sauer教授團隊開發的dSTORM,可以在10-20納米范圍內實現分辨率。結合結構化照明方法,染料的定位精度可達1納米。不幸的是,這種高定位精度無法轉化為細胞中幾納米的空間分辨率。問題在于:目前的標記方法,例如用抗體進行免疫染色,會造成超過10納米的間距誤差。因此,標記分子的大小阻礙了納米級的分辨率。......閱讀全文

    光學成像與光聲成像對比

    小動光學活體成像主要采用生物發光(bioluminescence)與熒光(fluorescence)兩種技術。生物發光是用熒光素酶(Luciferase)基因標記細胞或DNA,而熒光技術則采用熒光報告基團(GFP、RFP, Cyt及dyes等)進行標記。利用一套非常靈敏的光學檢測儀器,讓研究

    光學成像的原理

    光學成像原理簡介一個成像系統主要包含以下幾個要素:·視場:能夠在顯示器上看到的物體上的部分·分辨率:能夠最小分辨的物體上兩點間的距離·景深:成像系統能夠保持聚焦清晰的最近和最遠的距離之差·工作距離:觀察物體時,鏡頭最后一面透鏡頂點到被觀察物體的距離·畸變:由鏡頭所引起的光學誤差,使得像面上各

    什么是光學相干成像

      光學相干斷層成像術(optical coherence tomography,OCT)是一種能對生物組織淺表微結構進行斷層成像的新技術,我們對時域光學相干斷層成像術(time domain optical coherence tomography,TDOCT)與傅立葉域光學相干斷層成像術(fo

    TEM的光學與成像設備

    快速的電子開關進行打開、改變和關閉。改變的速度僅僅受到透鏡的磁滯效應的影響。電子光學設備????????通常,TEM包含有三級透鏡。這些透鏡包括聚焦透鏡、物鏡、和投影透鏡。聚焦透鏡用于將最初的電子束成型,物鏡用于將穿過樣品的電子束聚焦,使其穿過樣品(在掃描透射電子顯微鏡的掃描模式中,樣品上方也有物鏡

    光學成像上的對比

    傳統的光學顯微鏡與激光共聚焦顯微鏡在光學成像上的對比,由兩者的成像可以很清楚的看出激光共聚焦顯微鏡在高倍率的成像下的景深高的優勢,在1000倍的放大率下,傳統的光學顯微鏡的視場內有很多已經模糊的離焦光信號被采集如圖3-1-(a),而激光共聚焦在整個視場內都可以獲得質量相當好的圖像信號如圖3-1-(b

    光學顯微鏡成像原理

    ??顯微鏡是由一個透鏡或幾個透鏡的組合構成的一種光學儀器,是人類進入原子時代的標志。主要用于放大微小物體成為人的肉眼所能看到的儀器。光學顯微鏡成像原理:???????光學顯微鏡主要由目鏡、物鏡、載物臺和反光鏡組成。目鏡和物鏡都是凸透鏡,焦距不同。物鏡的凸透鏡焦距小于目鏡的凸透鏡的焦距。物鏡相當于投影

    光聲成像: 光學和超聲成像的完美結合

    光聲成像: 光學和超聲成像的完美結合---Endra小動物光聲成像系統在腫瘤,血管,腦科學等領域的應用光聲成像是近年來發展起來的一種無損醫學成像方法,它結合了純光學成像的高對比度特性和純超聲成像的高穿透深度特性,可以提供高分辨率和高對比度的組織成像。光聲技術的原理是當一束光照射到生物組織上以后,生物

    活體光學成像技術之光學活體成像前動物脫毛的必要性

    在上幾期的文章中,我們分別介紹了熒光成像與生物發光成像的比較、熒光蛋白、熒光染料的挑選方法。當大家選擇了合適的標記方法并建立成像模型(藥物注射、腫瘤注射等)后,需要對實驗動物進行活體成像觀察。在成像前,對實驗動物進行完全脫毛是非常重要的步驟,直接關系能否獲得高質量的成像數據。今天將為大家詳細介紹成像

    光學顯微鏡的成像原理

    基本原理在光學顯微鏡下無法看清小于0.2μm的細微結構,這些結構稱為亞顯微結構(submicroscopic structures)或超微結構(ultramicroscopic structures;ultrastructures)。要想看清這些結構,就必須選擇波長更短的光源,以提高顯微鏡的分辨率。

    光學顯微鏡的成像原理

    光學顯微鏡的成像研究和設計,是以人眼可見光光線(人們常說的:可見光)的物理現象為基礎進行的。光學顯微鏡的分辨力受可見光波長的限制,質量較好的光學顯微鏡的分辨極限約為0.2μm。小于光波波長的物體因衍射而不能成像。為了觀察到更細微的物體和結構,科學家采用更短波長的電子射線來代替光波,設計出了電子顯微鏡

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频