單晶X射線衍射的理論發展
發現衍射現象 圖片 1912年勞埃等人根據理論預見,并用實驗證實了X射線與晶體相遇時能發生衍射現象,證明了X射線具有電磁波的性質,成為X射線衍射學的第一個里程碑。當一束單色X射線入射到晶體時,由于晶體是由原子規則排列成的 晶胞組成,這些規則排列的原子間距離與入射X射線波長有相同 數量級,故由不同原子散射的X射線相互干涉,在某些特殊方向上產生強X射線衍射,衍射線在空間分布的方位和強度,與晶體結構密切相關。這就是X射線衍射的基本原理。衍射線空間方位與晶體結構的關系可用 布拉格方程表示:2dsinθ=nλ式中:λ是X射線的波長;θ是衍射角;d是結晶面間隔;n是整數。波長λ可用已知的X射線衍射角測定,進而求得面間隔,即結晶內原子或離子的規則排列狀態。將求出的衍射X射線強度和面間隔與已知的表對照,即可確定試樣結晶的物質結構,此即定性分析。從衍射X射線強度的比較,可進行定量分析。 運動學衍射理論 Darwin的理論稱為X射線衍......閱讀全文
單晶X射線衍射的理論發展
發現衍射現象 圖片 1912年勞埃等人根據理論預見,并用實驗證實了X射線與晶體相遇時能發生衍射現象,證明了X射線具有電磁波的性質,成為X射線衍射學的第一個里程碑。當一束單色X射線入射到晶體時,由于晶體是由原子規則排列成的 晶胞組成,這些規則排列的原子間距離與入射X射線波長有相同 數量級,故由
單晶X射線衍射的發展方向
X射線分析的新發展,金屬X射線分析由于設備和技術的普及已逐步變成金屬研究和有機材料, 納米材料測試的常規方法。而且還用于動態測量。早期多用照相法,這種方法費時較長,強度測量的精確度低。50年代初問世的計數器衍射儀法具有快速、強度測量準確,并可配備計算機控制等優點,已經得到廣泛的應用。但使用 單色
單晶X射線衍射的單晶衍射儀法
此法用射線計數儀直接記錄射線的強度。單晶衍射儀有線性衍射儀、四圓衍射儀和韋森堡衍射儀等,其中以四圓衍射儀(圖4),(見彩圖)最為通用。所謂四圓是指晶體和計數器藉以調節方位的四個圓,分別稱為φ圓、圓、w圓和2θ圓。φ圓是安裝晶體的測角頭轉動的圓;圓是支撐測角頭的垂直圓,測角頭可在此圓上運動;w圓是使圓
單晶X射線衍射的單晶衍射儀法
此法用射線計數儀直接記錄射線的強度。單晶衍射儀有線性衍射儀、四圓衍射儀和韋森堡衍射儀等,其中以四圓衍射儀(圖4),(見彩圖)最為通用。所謂四圓是指晶體和計數器藉以調節方位的四個圓,分別稱為φ圓、圓、w圓和2θ圓。φ圓是安裝晶體的測角頭轉動的圓;圓是支撐測角頭的垂直圓,測角頭可在此圓上運動;w圓是使圓
X射線衍射分析的理論發展介紹
發現衍射現象 1912年勞埃等人根據理論預見,并用實驗證實了 X射線與晶體相遇時能發生 衍射現象,證明了X射線具有 電磁波的性質,成為X射線衍射學的第一個里程碑。當一束單色X 射線入射到晶體時,由 于晶體是由原子規則排列成的 晶胞組成,這些規則排列的原子間距離與入射X射線 波長有 相同數量級
X射線單晶衍射的簡介
X射線單晶衍射(X-ray diffraction of single crystal)是2014年全國科學技術名詞審定委員會公布的藥學名詞,出自《藥學名詞》第二版。 當晶體被X射線照射時,晶體中各原子的散射X射線會疊加起來。當X射線為單色時,各原子的散射X射線發生干涉,在特定的方向上產生強的
單晶X射線衍射的原理簡介
利用晶體形成的 X射線衍射,對物質進行內部原子在空間分布狀況的結構分析方法。將具有一定波長的X射線照射到結晶性物質上時,X射線因在結晶內遇到規則排列的原子或離子而發生散射,散射的X射線在某些 方向上相位得到加強,從而顯示與結晶結構相對應的特有的 衍射現象。衍射X射線滿足布拉格(W.L.Brag
X射線單晶體衍射儀的發展方向
數據的積累從前述的應用已經看出,晶體結構的測定及結構與性能關系的研究,是今后走上人類按需設計新材料的基礎。今日雖已測了許多晶體的結構,但還有許多未能測定,而且還不斷有新化合物,新晶體出現,因此不斷的測定他們的結構,加以總結分析是十分必要的。當今已有多個晶體結構數據庫,如:⑴劍橋結構數據庫(CSD)。
x射線單晶體衍射儀
X射線單晶體衍射儀X射線單晶體衍射儀(X-ray single crystal diffractometer,簡寫為XRD)。本儀器分析的對象是一粒單晶體,如一粒砂糖或一粒鹽。在一粒單晶體中原子或原子團均是周期排列的。將X射線(如Cu的Kα輻射)射到一粒單晶體上會發生衍射,由對衍射線的分析可以解
X射線單晶體衍射儀
X射線單晶體衍射儀(X-ray single crystal diffractometer)。本儀器分析的對象是一粒單晶體,如一粒砂糖或一粒鹽。在一粒單晶體中原子或原子團均是周期排列的。將X射線(如Cu的Kα輻射)射到一粒單晶體上會發生衍射,由對衍射線的分析可以解析出原子在晶體中的排列規律,也即解出
x射線單晶衍射儀和多晶衍射儀的區別
衍射儀的進展主要在三個方面:1、X射線發生器,2、探測器,3、衍射幾何與光路。折疊x射線發生器X射線發生器是進行X射線衍射實驗所不可缺少的、重要的設備之一,其優劣會嚴重影響X射線衍射數據的質量。折疊探測器探測器是用來記錄衍射譜的,因而是多晶體衍射設備中不可或缺的重要部件之一。早先被廣泛使用的是照相底
X射線單晶體衍射儀的實驗方法發展
目前的實驗室單晶體結構分析方法對于測定小分子的單晶體結構已經是相當完美了,但對于巨大的生物大分子就顯得軟弱無力,主要是光源強度不夠,光的平行性不良,波長又不好調。目前主要要依靠同步輻射作為X射線源。中國二個同步輻射光源之一的位于合肥的國家同步輻射實驗室(NSRL)已勝利完成用于生物大分子結構測定
關于X射線單晶體衍射儀結構的發展介紹
目前雖已有各種方法用來解決相角的問題,但要置換許多同晶化合物還是頗費時和頗昂貴的,如果能如小分子那樣用直接法來解決相角問題,將會方便許多。中國科學家范海福院士是研究直接法的世界權威人物,正在進行這方面的研究。
x射線單晶體衍射儀可能的發展方向
數據的積累 從前述的應用已經看出,晶體結構的測定及結構與性能關系的研究, 是今后走上人類按需設計新材料的基礎。今日雖已測了許多晶體的結構,但還有許多未能測定,而且還不斷有新化合物,新晶體出現, 因此不斷的測定他們的結構,加以總結分析是十分必要的。當今已有多個晶體結構數據庫,如:(1)劍橋結構數
X射線單晶體衍射儀的介紹
X射線單晶體衍射儀(X-ray single crystal diffractometer)。本儀器分析的對象是一粒單晶體,如一粒砂糖或一粒鹽。在一粒單晶體中原子或原子團均是周期排列的。將X射線(如Cu的Kα輻射)射到一粒單晶體上會發生衍射,由對衍射線的分析可以解析出原子在晶體中的排列規律,也即解出
x射線單晶體衍射儀的應用
晶體結構的測定對學科的發展、物體性能的解釋、新產品的生產和研究等方面都有很大的作用,其應用面很寬,不能盡述,略談幾點如下: (一).晶體結構的成功測定,在 晶體學學科的發展上起了決定的作用。因為他將晶體具有周期性結構這一推測得到了證實,使晶體的許多特性得到了解釋:如晶體能自發長成 多面體外形(
X射線單晶體衍射儀的應用
晶體結構的測定對學科的發展、物體性能的解釋、新產品的生產和研究等方面都有很大的作用,其應用面很寬,不能盡述,略談幾點如下:(一).晶體結構的成功測定,在晶體學學科的發展上起了決定的作用。因為他將晶體具有周期性結構這一推測得到了證實,使晶體的許多特性得到了解釋:如晶體能自發長成多面體外形(自范性),如
X射線單晶與多晶衍射技術的區別
衍射儀的進展主要在三個方面:1、X射線發生器,2、探測器,3、衍射幾何與光路。折疊x射線發生器X射線發生器是進行X射線衍射實驗所不可缺少的、重要的設備之一,其優劣會嚴重影響X射線衍射數據的質量。折疊探測器探測器是用來記錄衍射譜的,因而是多晶體衍射設備中不可或缺的重要部件之一。早先被廣泛使用的是照相底
X射線衍射技術的理論基礎
當一束單色X射線入射到晶體時,由于晶體是由原子規則排列成的晶胞組成,這些規則排列的原子間距離與入射X射線波長有相同數量級,故由不同原子散射的X射線相互干涉,在某些特殊方向上產生強X射線衍射,衍射線在空間分布的方位和強度,與晶體結構密切相關。這就是X射線衍射的基本原理。布拉格方程1913年英國物理學家
x射線單晶體衍射儀同步輻射
是一種大科學裝置,設備大投資高,一般都需要政府投資,不是一般實驗室所能具備的,需要 申請立項才能使用。因此,如果能發展出高強度的實驗室光源和極高靈敏度的探測器,使在一般實驗室中也能測定生物大分子結構,則絕對是有益的。 有許多生物反應的速度是相當快的, 如血紅蛋白與一氧化碳的結合,速度在納秒級(
單晶射線衍射儀
單晶射線衍射儀是一種用于化學領域的分析儀器,于2004年1月1日啟用。 技術指標 額定功率:50kv 40mA。CCD探測器:62mm 4K CCD芯片,Mo 光源增益>170電子/X光子; X-射線發生器:功率3kW,Mo靶陶瓷X射線光管; 三軸(ω,2θ,φ)測角儀:φ360o旋轉≤0.
x射線單晶體衍射儀數據的積累
數據的積累 從前述的應用已經看出,晶體結構的測定及結構與性能關系的研究, 是今后走上人類按需設計新材料的基礎。今日雖已測了許多晶體的結構,但還有許多未能測定,而且還不斷有新化合物,新晶體出現, 因此不斷的測定他們的結構,加以總結分析是十分必要的。當今已有多個晶體結構數據庫,如: 1、劍橋結構
X射線單晶體衍射儀的基本公式
由于晶體中原子是周期排列的,其周期性可用點陣表示。而一個三維點陣可簡單地用一個由八個相鄰點構成的平行六面體(稱晶胞)在三維方向重復得到。一個晶胞形狀由它的三個邊(a,b,c)及它們間的夾角(γ,α,β)所規定,這六個參數稱點陣參數或晶胞參數,見圖1。這樣一個三維點陣也可以看成是許多相同的平面點陣平行
x射線單晶體衍射儀的應用簡介
晶體結構的測定對學科的發展、物體性能的解釋、新產品的生產和研究等方面都有很大的作用,其應用面很寬,不能盡述,略談幾點如下: (一).晶體結構的成功測定,在 晶體學學科的發展上起了決定的作用。因為他將晶體具有周期性結構這一推測得到了證實,使晶體的許多特性得到了解釋:如晶體能自發長成 多面體外形(
x射線單晶體衍射儀的基本公式
由于晶體中原子是周期排列的,其周期性可用點陣表示。而一個三維點陣可簡單地用一個由八個相鄰點構成的 平行六面體(稱 晶胞)在三維方向重復得到。一個晶胞形狀由它的三個邊(a,b,c)及它們間的夾角(γ,α,β)所規定,這六個參數稱點陣參數或 晶胞參數,見圖1。這樣一個三維點陣也可以看成是許多相同的平
X射線單晶衍射儀:探究物質結構的利器
X射線單晶衍射儀(X-ray single crystal diffractometer),是一種利用X射線穿過單晶產生的衍射效應來測定晶體結構的實驗方法,主要功能是測定晶體結構 、分析晶體對稱性以及研究未知晶體等。其應用范圍較廣,單晶結構分析能夠揭示化合物的結構和性能間的關系,對功能材料、有機
x射線單晶體衍射儀單晶體結構分析實驗方法的發展
單晶體結構分析實驗方法的發展 目前的實驗室單晶體結構分析方法對于測定小分子的單晶體結構已經是相當完美了, 但對于巨大的生物大分子就顯得軟弱無力,主要是光源強度不夠,光的平行性不良,波長又不好調。目前主要要依靠 同步輻射作為 X射線源。我國二個 同步輻射光源之一的位于合肥的國家同步輻射實驗室(
X射線晶體衍射學的理論依據
對于X 射線衍射理論的研究, 目前有兩種理論:運動學和動力學衍射理論 [2] 。 運動學衍射理論 達爾文(Darwin)的理論稱為X 射線衍射運動學理論。該理論把衍射現象作為三維Frannhofer 衍射問題來處理, 認為晶體的每個體積元的散射與其它體積元的散射無關, 而且散射線通過晶體時不
X衍射儀和單晶X衍射儀的區別
X射線衍射儀可以分為X射線粉末衍射儀和X射線單晶衍射儀。在傳統的X射線衍射儀器中,單晶衍射儀及粉晶衍射儀功能各別,如四圓單晶衍射儀,如果所挑選的晶體顆粒不是嚴格的單晶體(該單晶體用于準直X射線,即獲得單色的X射線),則無法進行后繼的測試研究,而粉晶衍射儀也不能進行單晶數據收集。
X衍射儀和單晶X衍射儀的區別
X射線衍射儀可以分為X射線粉末衍射儀和X射線單晶衍射儀。在傳統的X射線衍射儀器中,單晶衍射儀及粉晶衍射儀功能各別,如四圓單晶衍射儀,如果所挑選的晶體顆粒不是嚴格的單晶體(該單晶體用于準直X射線,即獲得單色的X射線),則無法進行后繼的測試研究,而粉晶衍射儀也不能進行單晶數據收集。