概述x射線熒光光譜儀安全事項
在分析過程中,給管通電后,分析儀會發射定向輻射束。應盡合理的努力使放射線的暴露量保持在實際可行的劑量限度以下。這就是所謂的ALARA(最低合理可行)原則。三個因素將有助于最大程度地減少您的輻射暴露:時間,距離和屏蔽。 盡管便攜式x射線熒光光譜儀或手持式x射線熒光光譜儀元素分析儀發出的輻射與普通醫學X射線所接收的輻射相似,但必須注意始終將手持式x射線熒光光譜儀直接指向樣品,而切勿將其指向人身體的某一部分。 以下是七個安全提示: 1.為操作員提供輻射安全培訓 2.當主光束(X射線點亮)亮起時,切勿將設備對準自己或他人 3.分析過程中切勿盛裝新樣品 4.注意觀察主光束指示燈 5.遵從使用步驟 6.安全存儲–遵守本地存儲要求 7.如果遇到安全緊急情況,請及時就醫或聯系技術人員。......閱讀全文
概述x射線熒光光譜儀安全事項
在分析過程中,給管通電后,分析儀會發射定向輻射束。應盡合理的努力使放射線的暴露量保持在實際可行的劑量限度以下。這就是所謂的ALARA(最低合理可行)原則。三個因素將有助于最大程度地減少您的輻射暴露:時間,距離和屏蔽。 盡管便攜式x射線熒光光譜儀或手持式x射線熒光光譜儀元素分析儀發出的輻射與普通
x射線熒光光譜儀安全事項
在分析過程中,給管通電后,分析儀會發射定向輻射束。應盡合理的努力使放射線的暴露量保持在實際可行的劑量限度以下。這就是所謂的ALARA(最低合理可行)原則。三個因素將有助于最大程度地減少您的輻射暴露:時間,距離和屏蔽。 盡管便攜式x射線熒光光譜儀或手持式x射線熒光光譜儀元素分析儀發出的輻射與普通
x射線熒光光譜儀安全事項
在分析過程中,給管通電后,分析儀會發射定向輻射束。應盡合理的努力使放射線的暴露量保持在實際可行的劑量限度以下。這就是所謂的ALARA(最低合理可行)原則。三個因素將有助于最大程度地減少您的輻射暴露:時間,距離和屏蔽。 盡管便攜式x射線熒光光譜儀或手持式x射線熒光光譜儀元素分析儀發出的輻射與普通
概述X射線熒光光譜儀X射線的產生
根據經典電磁理論,運動的帶電粒子的運動速度發生改變時會向外輻射電磁波。實驗室中常用的X射線源便是利用這一原理產生的:利用被高壓加速的電子轟擊金屬靶,電子被金屬靶所減速,便向外輻射X射線。這些X射線中既包含了連續譜線,也包括了特征譜線。 1、連續譜線 連續光譜是由高能的帶電粒子撞擊金屬靶面時受
x射線熒光光譜儀用途與安全事項
一、應用領域 x射線熒光光譜儀具有廣泛的應用,包括 火成巖,沉積巖和變質巖學研究 土壤調查 采礦(例如,測量礦石品位) 水泥生產 陶瓷和玻璃制造 冶金(例如質量控制) 環境研究(例如,對空氣過濾器上的顆粒物進行分析) 石油工業(例如,原油和石油產品的硫含量) 地質和環境研究中
X射線熒光光譜儀概述
X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析B(5)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水
X射線熒光光譜儀的概述
自1895年倫琴發現X射線以來,X射線及相關技術的研究和應用取得了豐碩成果。其中,1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎;20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段;60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅
X-射線熒光光譜儀
用X射線照射試樣時,試樣可以被激發出各種波長的熒光X射線,需要把混合的X射線按波長(或能量)分開,分別測量不同波長(或能量)的X射線的強度,以進行定性和定量分析,為此使用的儀器叫X射線熒光光譜儀。由于X光具有一定波長,同時又有一定能量,因此,X射線熒光光譜儀有兩種基本類型:波長色散型和能量色散型。圖
X射線熒光光譜儀X射線吸收的介紹
當X射線穿過物質時,一方面受散射作用偏離原來的傳播方向,另一方面還會經受光電吸收。光電吸收效應會產生X射線熒光和俄歇吸收,散射則包含了彈性和非彈性散射作用過程。 當一單色X射線穿過均勻物體時,其初始強度將由I0衰減至出射強度Ix,X射線的衰減符合指數衰減定律: 式中,μ為質量衰減系數;ρ為樣
X射線熒光光譜儀X射線散射的介紹
除光電吸收外,入射光子還可與原子碰撞,在各個方向上發生散射。散射作用分為兩種,即相干散射和非相干散射。 相干散射:當X射線照射到樣品上時,X射線便與樣品中的原子相互作用,帶電的電子和原子核就跟隨著X射線電磁波的周期變化的電磁場而振動。因原子核的質量比電子大得多,原子核的振動可忽略不計,主要是原
X射線熒光光譜儀X射線的衍射介紹
相干散射與干涉現象相互作用的結果可產生X射線的衍射。X射線衍射與晶格排列密切相關,可用于研究物質的結構。 其中一種用已知波長λ的X射線來照射晶體樣品,測量衍射線的角度與強度,從而推斷樣品的結構,這就是X射線衍射結構分析(XRD)。 另一種是讓樣品中發射出來的特征X射線照射晶面間距d已知的晶體
X射線熒光光譜儀X射線光管結構
常規X射線光管主要采用端窗和側窗兩種設計。普通X射線光管一般由真空玻璃管、陰極燈絲、陽極靶、鈹窗以及聚焦柵極組成,并利用高壓電纜與高壓發生器相接,同時高功率光管還需要配有冷卻系統。側窗和端窗X射線光管結構如圖6和圖7所示。 當電流流經X射線光管燈絲線圈時,引起陰極燈絲發熱發光,并向四周發射電子
X射線熒光光譜儀和X射線熒光能譜儀特點對比
X射線熒光光譜儀和X射線熒光能譜儀各有優缺點。前者分辨率高,對輕、重元素測定的適應性廣。對高低含量的元素測定靈敏度均能滿足要求。后者的X射線探測的幾何效率可提高2~3數量級,靈敏度高。可以對能量范圍很寬的X射線同時進行能量分辨(定性分析)和定量測定。對于能量小于2萬電子伏特左右的能譜的分辨率差。
X射線熒光光譜儀結構
該系統由X射線發生器、光譜儀主體部分、電氣部分及系統控制器、計算機部分組成。3.1?X射線發生器 X射線發生器由高壓變壓器及管流管壓控制單元、X射線管、熱交換器。?3.1.1高壓變壓器及管流管壓控制單元 產生高穩定的高壓加到X射線管上用以產生X射線。這里利用高電壓加速的高速電子轟擊X射線管金屬靶面產
X射線熒光光譜儀原理
X射線熒光光譜儀原理?????? X射線熒光光譜儀主要由激發源(X射線管)和探測系統構成。其原理就是:X射線管通過產生入射X射線(一次X射線),來激發被測樣品。 受激發的樣品中的每一種元素會放射出二次X射線(又叫X熒光),并且不同的元素所放射出的二次X射線具有特定的能量特性或波長特性。探測系統測量這
X射線熒光光譜儀(XRF)
原理:用一束X射線或低能光線照射樣品材料,致使樣品發射二次特征X射線,也叫X射線熒光。這些X射線熒光的能量或波長是特征的,樣品中元素的濃度直接決定射線的強度。從而根據特征能量線鑒別元素的種類,根據譜線強度來進行定量分析。XRF有波長散射型(WDXRF)和能量散射型(EDXRF)兩種,前者測量精密度好
X射線熒光光譜儀(XRF)
自1895年倫琴發現X射線以來,X射線及相關技術的研究和應用取得了豐碩成果。其中,1910年特征X射線光譜的發現,為X射線光譜學的建立奠定了基礎;20世紀50年代商用X射線發射與熒光光譜儀的問世,使得X射線光譜學技術進入了實用階段;60年代能量色散型X射線光譜儀的出現,促進了X射線光譜學儀器的迅
X射線熒光光譜儀優點
X射線熒光光譜儀優點:1)可在一臺儀器上可實現掃描式X射線波長色散分析、X射線能量色散分析、X-射線聚焦微小區域分析、游離氧化鈣X射線衍射分析。2)波長色散通道(波譜核)和能量色散通道(能譜核)可同時分別得到Be-?Am?和Na-Am?所有元素的光譜數據和定量分析結果。3)軟件可以得到上述各種分析技
x射線熒光光譜儀簡介
x射線熒光光譜儀提供了一種最簡單,最準確,最經濟的分析方法,可用于確定多種類型材料的化學成分。它是無損且可靠的,不需要或只需很少的樣品制備,適用于固體,液體和粉末狀樣品。它可以用于從鈉到鈾的多種元素,并提供亞ppm級以下的檢測限;它也可以輕松,同時地測量高達100%的濃度。
X射線熒光光譜儀簡介
X射線熒光光譜儀具有重現性好,測量速度快,靈敏度高的特點。能分析F(9)~U(92)之間所有元素。樣品可以是固體、粉末、熔融片,液體等,分析對象適用于煉鋼、有色金屬、水泥、陶瓷、石油、玻璃等行業樣品。無標半定量方法可以對各種形狀樣品定性分析,并能給出半定量結果,結果準確度對某些樣品可以接近定量水
X射線熒光光譜儀的基體效應的概述
在X射線熒光分析中,隨著高度精密、穩定儀器的出現與發展,基體效應已成為元素定量測定中分析誤差的主要來源。所謂基體效應,全面說來,是指樣品的基本化學組成和物理-化學狀態的變化,對分析射線強度所造成的影響。樣品的基本化學組成,通常指包括分析元素在內的主量元素;樣品的物理-化學狀態,則應包括固體粉末的
X射線衍射儀與X射線熒光光譜儀的區別
X射線衍射儀(XRD)是礦物學研究領域內的主要儀器,用于對結晶物質的定性和定量分析。X射線熒光光譜儀(XRF)是通過測定二次熒光的能量來分辨元素的,可做定量或定性分析。兩種儀器構造與使用對象不同,XRD要復雜,XRF通常比較小。
X射線熒光光譜儀中的X射線原理科普
X射線熒光光譜儀是一種快速的、非破壞式的物質測量方法。x射線具有很高的穿透本領,能透過許多對可見光不透明的物質,如墨紙、木料等。這種肉眼看不見的射線可以使很多固體材料發生可見的熒光,使照相底片感光以及空氣電離等效應。X射線初用于醫學成像診斷和X射線結晶學。X射線也是游離輻射等這一類對人體有危害的
X射線衍射儀與X射線熒光光譜儀的區別
X射線衍射儀(XRD)是礦物學研究領域內的主要儀器,用于對結晶物質的定性和定量分析。X射線熒光光譜儀(XRF)是通過測定二次熒光的能量來分辨元素的,可做定量或定性分析。兩種儀器構造與使用對象不同,XRD要復雜,XRF通常比較小。
X射線衍射儀與X射線熒光光譜儀的區別
X射線衍射儀(XRD)是礦物學研究領域內的主要儀器,用于對結晶物質的定性和定量分析。X射線熒光光譜儀(XRF)是通過測定二次熒光的能量來分辨元素的,可做定量或定性分析。兩種儀器構造與使用對象不同,XRD要復雜,XRF通常比較小。
X射線衍射儀與X射線熒光光譜儀的區別
X射線衍射儀(XRD)是礦物學研究領域內的主要儀器,用于對結晶物質的定性和定量分析。X射線熒光光譜儀(XRF)是通過測定二次熒光的能量來分辨元素的,可做定量或定性分析。兩種儀器構造與使用對象不同,XRD要復雜,XRF通常比較小。
X射線衍射儀與X射線熒光光譜儀的區別
x射線熒光和x射線衍射的區別在于前者是對材料進行成份分析的儀器,而后者則主要是對材料進行微觀結構分析以便確定其物理性狀的設備。
X射線衍射儀與X射線熒光光譜儀的區別
X射線衍射儀(XRD)是礦物學研究領域內的主要儀器,用于對結晶物質的定性和定量分析。X射線熒光光譜儀(XRF)是通過測定二次熒光的能量來分辨元素的,可做定量或定性分析。兩種儀器構造與使用對象不同,XRD要復雜,XRF通常比較小。
X射線熒光光譜儀X射線防護系統的故障分析
為了防止X射線泄漏,高壓發生器只有在射線防護系統正常的情況下才能啟動。射線防護系統正常與否,主要檢查以下二部分: 1、面板的位置是否正常。X射線熒光光譜儀是一個封閉系統,面板是最外層的射線防護裝置,如果有一塊面板不到位,儀器就有射線泄漏的可能。因此,每塊面板上都有位置接觸傳感器,面板沒有完全合
X射線熒光光譜儀X射線防護系統故障分析
為了防止X射線泄漏,高壓發生器只有在射線防護系統正常的情況下才能啟動。射線防護系統正常與否,主要檢查以下二部分: 1、面板的位置是否正常。X射線熒光光譜儀是一個封閉系統,面板是最外層的射線防護裝置,如果有一塊面板不到位,儀器就有射線泄漏的可能。因此,每塊面板上都有位置接觸傳感器,面板沒有完全合上