電磁輻射激發X熒光分析的簡介
簡稱EDXRF。電磁輻射激發一般用X射線管或Fe、Pu、Cd、、Co等放射性同位素作激發源。這時它的探測極限雖不及PIXE,但制樣簡便,常常可以直接分析原始樣品,而且既能分析低含量樣品,又能分析高含量樣品,因此應用更為廣泛。X射線在物質中的穿透能力較大,故能測量較厚樣品中的元素平均含量。當使用放射性同位素作激發源時能夠制成便攜式的儀器,不僅可用于實驗室,還可以用于工廠、野外地質和礦山。當使用電子同步加速器或電子儲存環發出的高強度偏振輻射作激發源時,探測極限比PIXE好幾個數量級。若再使用晶體單色器,還可以制成同步輻射X射線微探針,進行微區分析。......閱讀全文
電磁輻射激發X熒光分析的簡介
簡稱EDXRF。電磁輻射激發一般用X射線管或Fe、Pu、Cd、、Co等放射性同位素作激發源。這時它的探測極限雖不及PIXE,但制樣簡便,常常可以直接分析原始樣品,而且既能分析低含量樣品,又能分析高含量樣品,因此應用更為廣泛。X射線在物質中的穿透能力較大,故能測量較厚樣品中的元素平均含量。當使用放
質子激發X射線熒光分析的簡介
利用原子受質子激發后產生的特征 X射線的能量和強度來進行物質定性和定量分析的方法。簡稱質子 X射線熒光分析,英文縮寫為PIXE。質子X 射線熒光分析是20 世紀70 年代發展起來的一種多元素微量分析技術,其分析靈敏度可達10-16 克,相對靈敏度可達10-6~10-7 克/克。原則上可分析原子序
電子激發X熒光分析的介紹
電子激發X熒光分析的軔致輻射本底比PIXE高二個量級以上,因此分析靈敏度低得多。但是,用聚焦的電子束激發樣品表面1微米的區域,使產生元素的特征X 射線,可以觀察樣品表面組成的局部變化。用這種方法能測定合金、礦物、陶瓷等樣品中的夾雜物和析出物,決定合金元素的局部富集區等。
質子激發X射線熒光分析的X 射線譜
在質子X 射線熒光分析中所測得的X 射線譜是由連續本底譜和特征X 射線譜合成的疊加譜。樣品中一般含有多種元素,各元素都發射一組特征X 射線譜,能量相同或相近的譜峰疊加在一起,直觀辨認譜峰相當困難,需要通過復雜的數學處理來分解X 射線譜。解譜包括本底的扣除、譜的平滑處理、找峰和定峰位、求峰的半高寬
激發X射線熒光分析法的概念
當α 、β、γ或X射線作用于樣品時,由于庫侖散射,軌道電子吸收其部分動能,使原子處于激發狀態。由激發態返回基態時發射特征X射線,根據此特征X射線的能量和強度來分析元素的種類和含量。其靈敏度很高,用途很廣。
質子激發X射線熒光分析的實驗裝置
質子X 射線熒光分析的主要實驗裝置包括: ①加速器,一般用質子靜電加速器,選用能量為1~3 兆電子伏的質子,在此能量范圍內,質子激發X射線的產額高,靈敏度高;質子的能量再高時,將會引起許多核反應,使本底增大;能量再低時,質子的穿透能力下降,只能用于表面分析。②靶室(或稱散射室),是分析樣品放置
簡述質子激發X射線熒光分析的原理
基本原理是用高速質子照射樣品,質子與樣品中的原子發生庫侖散射。原子內層電子按一定幾率被撞出內殼層,留下空穴,較外層電子向這個空穴躍遷時發射出特征X 射線。用探測儀器探測和記錄這些特征X 射線譜,根據特征X 射線的能量可定性地判斷樣品中所含元素的種類,根據譜線的強度可計算出所測元素的含量。
帶電粒子激發X熒光分析的概述
簡稱PIXE,它應用的帶電粒子可以是質子、α粒子或重離子,目前使用最多的是質子。它是用加速器(常用靜電加速器產生的幾兆電子伏能量的質子束轟擊樣品,質子使樣品中各元素原子的內層電子電離,接著較外層的電子向內層躍遷,同時發射X射線。由于各種元素發射具有特定波長(或能量)的標識X射線,可利用鋰漂移硅探
質子激發X射線熒光分析的非真空分析技術
質子X 射線熒光分析一般在真空中照射樣品(稱作真空分析或內束技術),但也發展了一種非真空分析技術(或稱外束技術),即將質子束從真空室中引出,在空氣(或氦氣)中轟擊樣品。真空分析可能引起厚樣品積累正電荷(質子電荷)而吸引周圍電子,造成本底增高。非真空分析由于樣品周圍空氣電離而有導電性,可消除電荷積
技術課堂之X熒光激發源的激發方式
針對通常的X射線熒光光譜儀,比較普及的激發方法有一下幾種: 一、用放射性同位素源激發 源激發是將小量的放射性同位素,如55Fe(鐵)、109Cd(鎘)等化學物質固封在密封性的多出小圓孔的鉛罐中,持續發射點出低能γ放射線,經準直后照射被測化學物質上造成X瑩光。放射性同位素源傳出的X射線