核磁共振法的基本原理
核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可 以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,如下表。分類質量數原子序數自旋量子數INMR信號I偶數偶數0無II偶數奇數1,2,3,…(I為整數)有III奇數奇數或偶數0.5,1.5,2.5,…(I為半整數)有I值為零的原子核可以看做是一種非自旋的球體,I為1/2的原子核可以看做是一種電荷分布均勻的自旋球體,1H,13C,15N,19F,31P的I均為1/2,它們的原子核皆為電荷分布均勻的自旋球體。I大于1/2的原子核可以看做是一種電荷分布不均勻的自旋橢球體。......閱讀全文
核磁共振法的基本原理
核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可 以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,如下表。分類質量數原子序數自旋量子數INMR信號I偶數偶數0無II偶數奇數1,2,3,…(I為整數)有III奇數奇數或
核磁共振波譜法的基本原理
根據量子力學原理,與電子一樣,原子核也具有自旋角動量,其自旋角動量的具體數值由原子核的自旋量子數I決定,原子核的自旋量子數I由如下法則確定:1)中子數和質子數均為偶數的原子核,自旋量子數為0;2)中子數加質子數為奇數的原子核,自旋量子數為半整數(如,1/2, 3/2, 5/2);3)中子數為奇數,質
核磁共振波譜法基本原理(二)
(三)核磁共振條件由于在磁場中具有核磁矩的1H裂分為兩個不同能級,如果在B0的垂直方向用電磁波照射,提供一定的能量,當電磁波的能量(hv)等于兩個能級的能級差△E,則處于低能級的核可以吸收頻率為v的射頻波躍遷到高能級,從而產生核磁共振吸收信號。相鄰核磁能級的能級差為:電磁波的能量:△E'=h
核磁共振波譜法基本原理(一)
(一)原子核的磁性質原子核是帶正電的粒子,實驗證明大多數原子核在做自旋運動,因而具有一定的自旋角動量,用P表示,角動量是一個矢量,其方向服從右手螺旋定則。核由自旋產生的角動量不是任意數值,而是由自旋量子數決定的。根據量子力學理論,原子核的總角動量P的值為式中,h為普朗克常量;h為角動量的單位,h=h
核磁共振波譜分析法(NMR)基本原理
??? 從IR、UV-VIS光譜可獲取分子內官能團的有關信息,但分子內各官能團如何連接的確切結構常常還必須依靠其它分析手段才能得知,在這方面NMR法是一個非常有力的工具。??? 磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同
核磁共振的基本原理
原子核的自旋核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可 以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,如下表。分類質量數原子序數自旋量子數INMR信號I偶數偶數0無II偶數奇數1,2,3,…(I為整數)有II
核磁共振波譜的基本原理
基本原理就是外加磁場和原子自身的磁場二者頻率一致時就會產生共振,放出一個信號。主要獲得化合物的結構信息。
核磁共振波譜儀核磁共振譜儀基本原理
1)?原子核的基本屬性a.原子核的質量和所帶電荷 ——是原子核的最基本屬性。b.原子核的自旋和自旋角動量 ——量子力學中用自旋量子數I描述原子核的運動狀態。原子核的自旋運動具有一定的自旋角動量;其自旋角動量也是量子化的,它與自旋量子數 I 間的關系為:各種核的自旋量子數質量數A原子序數Z自旋量子數I
核磁共振法的概念
通過核磁共振光譜特性如化學遷移、耦合常數、多重性、吸收峰的寬度和強度以及溫度效應,來測定樣品的分子結構,特別是有機化合物的分子結構。
核磁共振法的技術特點
由于核磁共振是磁場成像,沒有放射性,所以對人體無害,是非常安全的。據了解,世界上既沒有任何關于使用核磁共振檢查引起危害的報道,也沒有發現患者因進行核磁共振檢查引起基因突變或染色體畸變發生率增高的現象。雖然核磁共振在篩查早期病變有著獨到之處,但任何檢查都是有限度的,比如有些病人不適合核磁共振,就不要過
二維核磁共振譜的基本原理
二維核磁共振譜的出現和發展,是近代核磁共振波譜學的最重要的里程碑。極大地方便了核磁共振的譜圖解析。二維核磁共振譜是有兩個時間變量,經兩次傅里葉變換得到的兩個獨立的頻率變量圖一般把第二個時間變量t2表示采樣時間,第一個時間變量t1則是與 t2無關的獨立變量,是脈沖序列中的某一個變化的時間間隔。二維核磁
核磁共振法的應用發現腫瘤
核磁共振對顱腦、脊髓等疾病是最有效的影像診斷方法,不僅可以早期發現腫瘤、腦梗塞、腦出血、腦膿腫、腦囊蟲癥及先天性腦血管畸形,還能確定腦積水的種類及原因等。而針對危害中國女性生命健康的第一大婦科疾患——乳腺癌,通過核磁共振精準篩查,可以幫助發現乳腺癌早期病灶;而針對“高血壓、高血脂、高血糖”等三高人群
核磁共振法的主要應用介紹
核磁共振應用:核磁共振成像(MRI)檢查已經成為一種常見的影像檢查方式,核磁共振成像作為一種新型的影像檢查技術,不會對人體健康有影響,但六類人群不適宜進行核磁共振檢查即:安裝心臟起搏器的人、有或疑有眼球內金屬異物的人、動脈瘤銀夾結扎術的人、體內物存留或金屬假體的人、有生命危險的危重病人、幽閉恐懼癥患
核磁共振法的應用發現病變
核磁共振成像是一種利用核磁共振原理的最新醫學影像新技術,對腦、甲狀腺、肝、膽、脾、腎、胰、腎上腺、子宮、卵巢、前列腺等實質器官以及心臟和大血管有絕佳的診斷功能。與其他輔助檢查手段相比,核磁共振具有成像參數多、掃描速度快、組織分辨率高和圖像更清晰等優點,可幫助醫生“看見”不易察覺的早期病變,已經成為腫
核磁共振譜法是怎樣的
MR波譜(MR spectroscopy,MRS)是目前能夠進行活體組織內化學物質無創性檢測的唯一方法。MRI提供的是正常和病理組織的形態信息,而MRS則可提供組織的代謝信息。MR波譜的基礎是組織的化學位移。MRS成像原理:通過對某組織的目標區域進行經過特殊設計的射頻脈沖的激發,組織馳豫并采集MR信
核磁共振波譜法的原理
核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋
核磁共振波譜法的原理
核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成2I+1個核自旋
核磁共振波譜法的概述
磁性原子核,比如H和C在恒定磁場中,只和特定頻率的射頻場作用。共振頻率,原子核吸收的能量以及信號強度與磁場強度成正比。比方說,在場強為21特斯拉的磁場中,質子的共振頻率為900MHz。盡管其他磁性核在此場強下擁有不同的共振頻率,但人們通常把21特斯拉和900MHz頻率進行直接對應。 化學位移在一個分
核磁共振波譜法簡介
核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或 NMRS ),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。 人們可以
核磁共振波譜法的相關介紹
核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或NMRS),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。 人們可以從核
關于核磁共振波譜法的簡介
核磁共振波譜法(英語:Nuclear Magnetic Resonance spectroscopy,簡稱 NMR spectroscopy 或 NMRS ),又稱核磁共振波譜,是將核磁共振現象應用于測定分子結構的一種譜學技術。核磁共振波譜的研究主要集中在氫譜和碳譜兩類原子核的波譜。 人們可以
核磁共振波譜分析法
核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。 磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的 的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中
核磁共振波譜分析法
核磁共振波譜分析法(NMR)是分析分子內各官能團如何連接的確切結構的強有力的工具。 磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數I。不同的 的核在一個外加的高場強的靜磁場(現代NMR儀器由充電的螺旋超導體產生)中將分裂成
什么是核磁共振波譜法?
核磁共振波譜法(Nuclear Magnetic Resonance Spectroscopy, NMR )NMR是研究原子核對射頻輻射(Radio-frequency Radiation)的吸收,它是對各種有機和無機物的成分、結構進行定性分析的最強有力的工具之一,有時亦可進行定量分析。
核磁共振波譜分析法
核磁共振波譜分析法(NMR)是分析?分子內各官能團如何連接的確切結構的強?有力的工具。磁場中所處的不同能量狀態(磁能級)。原子核由質子、中子組成,它們也具有自旋現象。描述核自旋運動特性的是核自旋量子數?I?。不同的的核在一個外加的高場強的靜磁場(現代?NMR?儀器由充電的螺旋超導體產生)中將分裂成?
核素稀釋法的基本原理
結構相同的標記物與非標記物混合后,兩者在分離純化過程中行為相同,標記物被稀釋的倍數可從比放射性下降的倍數計算出來,只要知道兩者中任何一個的量,就可根據比放射性的變化求出另一者的量。核素稀釋法靈敏度不很高,但由它派生出來的求整體代謝庫的稀釋法及求標記物含量的反稀釋法仍有廣泛用途。
色譜法的基本原理
? ? ?色譜法基本原理是指在填充色譜柱中,當組分隨流動相向柱出口遷移時,流動相由于受到固定相顆粒障礙,不斷改變流動方向,使組分分子在前進中形成紊亂的類似渦流的流動。色譜法(chromatography)又稱色譜分析、色譜分析法、層析法,是一種分離和分析方法,在分析化學、有機化學、生物化學等領域有著
溶膠凝膠法的基本原理
將酯類化合物或金屬醇鹽溶于有機溶劑中,形成均勻的溶液,然后加入其他組分,在一定溫度下反應形成凝膠,最后經干燥處理制成產品。
色譜法的基本原理
色譜過程的本質是待分離物質分子在固定相和流動相之間分配平衡的過程,不同的物質在兩相之間的分配會不同,這使其隨流動相運動速度各不相同,隨著流動相的運動,混合物中的不同組分在固定相上相互分離。根據物質的分離機制,又可以分為吸附色譜、分配色譜、離子交換色譜、凝膠色譜、親和色譜等類別。色譜法的應用可以根據目
DNA印跡法的基本原理
這種方法最初是由Southern于1975年建立的。方法中DNA轉移的方式和復印的過程一樣,比較準確地保持了特異DNA順序在電泳圖譜中的位置,也可將變性的凝膠負壓干燥后與特定的DNA探針進行原位雜交。它把電泳分離和雜交結合起來,不但能檢測出特異的DNA序列片段,而且能進行定位和測定分子量。即先以