<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>

  • 腺苷的結構和功能特點

    腺苷,是指由腺嘌呤的N-9與D-核糖的C-1通過β糖苷鍵連接而成的化合物,化學式為C10H13N5O4,其磷酸酯為腺苷酸。腺苷是一種遍布人體細胞的內源性核苷,可直接進入心肌經磷酸化生成腺苷酸,參與心肌能量代謝,同時還參與擴張冠脈血管,增加血流量。......閱讀全文

    腺苷的結構和功能特點

    腺苷,是指由腺嘌呤的N-9與D-核糖的C-1通過β糖苷鍵連接而成的化合物,化學式為C10H13N5O4,其磷酸酯為腺苷酸。腺苷是一種遍布人體細胞的內源性核苷,可直接進入心肌經磷酸化生成腺苷酸,參與心肌能量代謝,同時還參與擴張冠脈血管,增加血流量。

    腺苷酸的結構和功能特點

    腺苷酸是一種有機物,化學式為C10H14N5O7P,為腺嘌呤(Adenine)加核糖加磷酸的有機化合物,具有易溶于水,微溶于醇,不溶于醚的性質。腺苷酸是核糖核苷酸,而脫氧腺苷酸才是構成生物體細胞內遺傳物質DNA的四種主要單核苷酸之一(ATGC)。常指單磷酸腺苷酸(AMP),也是生物體內的能量傳遞物質

    脫氧腺苷單磷酸的結構和功能特點

    脫氧腺苷酸又稱為脫氧腺苷單磷酸,或者脫氧腺苷一磷酸,常叫做腺嘌呤脫氧核糖核苷酸。它一類由堿基(主要是嘌呤、嘧啶堿的衍生物)、戊糖(核糖或脫氧核糖)和磷酸連接而成的化合物,它是生物體內眾多核苷酸的一種,是構成核酸的基本單位。

    腺苷酸衍生物的結構特點和功能作用

    ADP和ATP是體內參與氧化磷酸化的高能化合物,ATP也是細胞內最豐富的游離核苷酸(如哺乳動物細胞中ATP濃度接近1毫克分子),水解1克分子ATP約釋放7000卡能量。腺苷-3′,5′-磷酸即環腺苷酸,主要存在于動物細胞中,生物體內的激素通過引起細胞內cAMP的含量發生變化,從而調節糖原、脂肪代謝、

    腺苷酸環化酶的結構和功能特點

    多肽、蛋白質類及兒茶酚胺激素如腎上腺素、胰高血糖素、胰島素、促腎上腺皮質素、促甲狀腺素等都是通過這一信息傳遞而發揮作用的。腺苷酸環化酶廣泛分布于哺乳動物的細胞膜中,此酶催化ATP生成cAMP并釋放焦磷酸。激素和相應的膜受體結合后,經G蛋白的中介激活腺苷酸環化酶。激素受體嵌在細胞膜的脂雙層內,它與激素

    腺苷二磷酸的結構和功能

    二磷酸腺苷(也叫腺苷二磷酸)是由一分子腺苷與兩個相連的磷酸根組成的化合物,它的分子式為C10H15N5O10P2。在生物體內,通常為三磷酸腺苷(ATP)水解失去一個磷酸根,即斷裂一個高能磷酸鍵,并釋放能量后的產物。

    腺苷一磷酸的結構和應用特點

    腺苷一磷酸(Adenosine 3'-monophosphate,from Yeast,簡稱AMP)是一種有機化合物。化學式為C10H14N5O7P。外觀為白色針狀結晶或結晶性粉末 。是一種在核糖核酸(RNA)中發現的核苷酸。它是一種磷酸及核苷腺苷的酯,并由磷酸鹽官能團、戊糖核酸糖及堿基腺嘌

    三磷酸腺苷合酶的結構和功能

    三磷酸腺苷合酶或ATP合酶,三磷酸腺苷酶(ATPase)的一種,在這里并特指F類的F0F1ATP合酶(F Type F0F1 ATP Synthase)。它利用呼吸鏈產生的質子的電化學勢能,通過改變蛋白質的結構來進行ATP的合成。

    腺苷一磷酸的結構功能

    腺苷一磷酸(Adenosine 3'-monophosphate,from Yeast,簡稱AMP)是一種有機化合物。化學式為C10H14N5O7P。外觀為白色針狀結晶或結晶性粉末。是一種在核糖核酸(RNA)中發現的核苷酸。它是一種磷酸及核苷腺苷的酯,并由磷酸鹽官能團、戊糖核酸糖及堿基腺嘌呤

    腺苷的結構和分布

    腺苷,是指由腺嘌呤的N-9與D-核糖的C-1通過β糖苷鍵連接而成的化合物,化學式為C10H13N5O4,其磷酸酯為腺苷酸。腺苷是一種遍布人體細胞的內源性核苷,可直接進入心肌經磷酸化生成腺苷酸,參與心肌能量代謝,同時還參與擴張冠脈血管,增加血流量。

    腺苷的結構和分布

    腺苷,是指由腺嘌呤的N-9與D-核糖的C-1通過β糖苷鍵連接而成的化合物,化學式為C10H13N5O4,其磷酸酯為腺苷酸。腺苷是一種遍布人體細胞的內源性核苷,可直接進入心肌經磷酸化生成腺苷酸,參與心肌能量代謝,同時還參與擴張冠脈血管,增加血流量。

    泛酸的結構和功能特點

    維生素B5又叫泛酸,是一種水溶性維生素,化學式為C9H17NO5,因廣泛存在于動植物中而得“泛酸”之名。由于所有的食物都含有維生素B5,所以幾乎不存在缺乏問題。

    葉酸的結構和功能特點

    葉酸是一種水溶性維生素,分子式是C19H19N7O6。因綠葉中含量十分豐富而得名,又名蝶酰谷氨酸。在自然界中有幾種存在形式,其母體化合物是由蝶啶、對氨基苯甲酸和谷氨酸3種成分結合而成。

    cccDNA的功能和結構特點

    在乙肝病毒的復制過程中,病毒DNA進入宿主細胞核,在DNA聚合酶的作用下,兩條鏈的缺口均被補齊,形成超螺旋的共價、閉合、環狀DNA分子(covalently closed circularDNA,cccDNA)。細胞外乙型肝炎病毒DNA是一種松弛環狀的雙鏈DNA(relaxed circularDN

    溶酶體的結構和功能特點

    溶酶體是分解蛋白質、核酸、多糖等生物大分子的細胞器。溶酶體具單層膜,形狀多種多樣,是0.025~0.8微米的泡狀結構,內含許多水解酶,溶酶體在細胞中的功能,是分解從外界進入到細胞內的物質,也可消化細胞自身的局部細胞質或細胞器,當細胞衰老時,其溶酶體破裂,釋放出水解酶,消化整個細胞而使其死亡。溶酶體(

    氫鍵的結構和功能特點

    氫原子與電負性大的原子X以共價鍵結合,若與電負性大、半徑小的原子Y(O F N等)接近,在X與Y之間以氫為媒介,生成X-H…Y形式的一種特殊的分子間或分子內相互作用,稱為氫鍵。[X與Y可以是同一種類分子,如水分子之間的氫鍵;也可以是不同種類分子,如一水合氨分子(NH3·H2O)之間的氫鍵]。

    葉綠體的結構和功能特點

    葉綠體?——也是雙層膜狀的細胞器,與線粒體類似,有自己的遺傳物質,能夠自己分裂增殖,自制本身所需的一些蛋白質。主要功能是進行光合作用,借由光能產生營養物質,也就是吸收光能,轉變成化學能,并借此將無機物(二氧化碳和水)合成為有機物(糖類)。光表示光能,合表示合成。

    亞基的結構特點和功能

    亞基(subunit)是生物學術語,指有些蛋白質分子含有兩條或多條多肽鏈,每一條多肽鏈都有完整的三級結構。亞基與亞基之間呈特定的三維空間排布,并以非共價鍵連接,它是具有四級結構的蛋白質中最小的共價單位。亞基之間的結合力主要是疏水作用,其次是離子鍵、氫鍵和范德華力。

    乙烯的結構和功能特點

    乙烯(Ethylene),化學式為C2H4,分子量為28.054,是由兩個碳原子和四個氫原子組成的有機化合物。兩個碳原子之間以碳碳雙鍵連接。乙烯存在于植物的某些組織、器官中,是由蛋氨酸在供氧充足的條件下轉化而成的。

    腺苷二磷酸的結構特點

    二磷酸腺苷(也叫腺苷二磷酸)是由一分子腺苷與兩個相連的磷酸根組成的化合物,它的分子式為C10H15N5O10P2。在生物體內,通常為三磷酸腺苷(ATP)水解失去一個磷酸根,即斷裂一個高能磷酸鍵,并釋放能量后的產物。

    腺苷脫氨酶的結構特點

    ADA以小形式(作為單體)和大形式(作為二聚體 - 復合物)存在。在單體形式中,酶是多肽鏈,折疊成8股平行的α/β桶,其圍繞作為活性位點的中央深口袋。除8個中心β-桶和8個外周α-螺旋外,ADA還含有5個額外的螺旋:殘基19-76倍折成三個螺旋,位于β1和α1折疊之間;兩個反平行的羧基末端螺旋位于β

    腺苷的結構特點及生理作用

    腺苷,是指由腺嘌呤的N-9與D-核糖的C-1通過β糖苷鍵連接而成的化合物,化學式為C10H13N5O4,其磷酸酯為腺苷酸。腺苷是一種遍布人體細胞的內源性核苷,可直接進入心肌經磷酸化生成腺苷酸,參與心肌能量代謝,同時還參與擴張冠脈血管,增加血流量。腺苷對心血管系統和肌體的許多其它系統及組織均有生理作用

    腺苷脫氨酶的結構特點

    ADA以小形式(作為單體)和大形式(作為二聚體 - 復合物)存在。在單體形式中,酶是多肽鏈,折疊成8股平行的α/β桶,其圍繞作為活性位點的中央深口袋。除8個中心β-桶和8個外周α-螺旋外,ADA還含有5個額外的螺旋:殘基19-76倍折成三個螺旋,位于β1和α1折疊之間;兩個反平行的羧基末端螺旋位于β

    質體醌的結構特點和功能

    質體醌廣泛存在于植物界,是具有一個多聚異戊二烯側鏈的三烷基取代的苯醌。如質體醌A是含有9個異戊烯單位側鏈的質體醌,在光合磷酸化中起重要作用。

    甲硫氨酸的結構和功能特點

    甲硫氨酸是一種化學物質,是構成人體的必需氨基酸之一,分子式是C5H11O2NS,參與蛋白質合成。因其不能在體內自身生成,所以必須由外部獲得。如果甲硫氨酸缺乏就會導致體內蛋白質合成受阻,造成機體損害。體內氧自由基造成的膜脂質過度氧化是導致機體多種損害的原因。脂質過氧化物會損害初級和次級溶酶體膜,使溶酶

    浸沒透鏡的結構和功能特點

    為了提高光學顯微鏡的分辨率常常使用油浸透鏡,浸沒透鏡或浸沒電子透鏡和這種油浸透鏡十分相似。它由兩個電極組成(可以是圓筒、膜片,也可以是圓筒、膜片的組合),如圖2-14所示。透鏡兩側的電位為常數,但電位不相等。圖2-14給出了浸沒透鏡的幾種電極結構形式。圖2-15是三種結構形式浸沒透鏡的電子運動軌跡示

    單透鏡的結構和功能特點

    單透鏡,一般它由三個電極組成,如圖2-12中a~d所示。這種透鏡具有和常規光學中的凸透鏡那種能把入射光會聚的功能。所以可以說單透鏡就是凸透鏡,它也是一個會聚透鏡,其結構比膜孔透鏡稍復雜。其特點為:圖2-12表2-1①電極可以是圓筒式也可以是膜片式的,但呈對稱結構;②最簡單的單透鏡只需要一個電位。圖2

    生殖質的結構和功能特點

    在卵子發生中形成的一種特殊的細胞質成分;這種成分分布在卵或胚胎的一定部位,含有這種成分的細胞將發育為原始生殖細胞,再由它產生出生殖母細胞。

    配子囊的結構和功能特點

    (1)藻類和真菌產生配子的細胞或結構。其中,產生精子的稱精子器或精子囊,產生卵子的稱卵囊或藏卵器。(2)某些真菌有性生殖過程中,菌絲體上的一些不分化為配子、但能彼此融合形成接合孢子的多核細胞。如根霉有性生殖過程中,(+)、(-)菌絲體相遇時,各自形成一些膨大的短枝,在短枝頂端的細胞即配子囊。當(+)

    動物極的結構和功能特點

    動物卵細胞富含原生質的一端稱為動物極。由于卵內所含細胞質、細胞器、核糖體、卵黃、色素粒及糖原顆粒等物質的不均勻分布而表現出極性,分為動物極和植物極;營養物質(卵黃)較少、卵裂速度較快的一極稱為動物極;細胞核偏位于動物極。與動物極相對的一端含較多的卵黃顆粒或卵黃小板、卵裂速度較慢的一極稱植物極。由于卵

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频