研究提出分而后合的脂質體PROTAC策略
近日,深圳灣實驗室坪山生物醫藥研發轉化中心的李子剛、尹豐課題組,在《美國化學會志》發表最新研究成果,提出了一種脂質體組裝形成的Liposome Split-and-Mix PROTAC(LipoSM-PROTAC)體系,該體系具有葉酸選擇性降解靶標蛋白的功能。研究人員以雌激素受體蛋白(ERα)為模型,通過體外實驗驗證發現該體系具有顯著降解雌激素受體蛋白的效果。 蛋白水解靶向嵌合體技術(PROTAC)已成為新藥研發的新戰略,為疾病的治療提供了新方法。PROTAC技術具有靶向不可成藥靶點、高催化活性、克服耐藥性等優勢。同時,在結構上,PROTAC通常由合適的Linker連接結合靶蛋白、E3連接酶配體形成線性結構,但這種線性結構與對應蛋白的結合效率較低。 基于傳統PROTAC僅能一一結合對應蛋白的缺陷,研究人員另辟新徑,提出了分合(Split-and-Mix,SM)納米自調節平臺,可用于篩選投入組裝分子以及組裝分子的比例,驗證......閱讀全文
研究提出分而后合的脂質體PROTAC策略
近日,深圳灣實驗室坪山生物醫藥研發轉化中心的李子剛、尹豐課題組,在《美國化學會志》發表最新研究成果,提出了一種脂質體組裝形成的Liposome Split-and-Mix PROTAC(LipoSM-PROTAC)體系,該體系具有葉酸選擇性降解靶標蛋白的功能。研究人員以雌激素受體蛋白(ERα)為
研究發現PROTAC藥物具有高成藥性
中國科學院上海藥物研究所研究員刁星星課題組、陳浩課題組,運用放射性標記技術,成功合成[14C]ARV-110作為PROTAC(蛋白水解靶向嵌合體)的代表性模型化合物,并揭示了PROTAC在口服生物利用度較低的情況下,依然能夠展現出良好的特異性和生物活性。相關研究成果發表于《藥物化學雜志》,并獲選
PROTAC技術的小分子降解劑類型概況
近年來,PROTAC技術以其可靶向傳統“不可成藥”蛋白的獨特優勢而備受醫藥研發人員的關注。目前對PROTACs技術的突破主要集中在對于E3連接酶類型的改變,使PROTACs由肽類向小分子轉變。泛素連接酶E3是一個蛋白家族,泛素化修飾的失調會給生命體帶來一系列負面影響,嚴重者將導致疾病,甚至危及生命,
脂質體簡介
脂質體(liposome)是一種人工膜。在水中磷脂分子親水頭部插入水中,脂質體疏水尾部伸向空氣,攪動后形成雙層脂分子的球形脂質體,直徑25~1000nm不等。脂質體可用于轉基因,或制備的藥物,利用脂質體可以和細胞膜融合的特點,將藥物送入細胞內部 生物學定義:當兩性分子如磷脂和鞘脂分散于水相時,分
Cell:新型PROTAC,首次實現細菌內靶蛋白降解
細菌感染每年導致數十萬人死亡,尤其在中低收入國家。考慮到過去50年來僅有少量抗生素獲批,新抗生素的發展還面臨著細菌包膜的低滲透性以及特異性靶標少的挑戰。病原體對現有藥物產生耐藥性的速度進一步加劇了尋找有效抗菌劑的困難。鑒于這種不平等的軍備競賽,細菌性流行病的卷土重來是一個很大的威脅,迫切需要對抗
癌癥治療新機遇:PROTAC靶向免疫代謝相關蛋白
免疫代謝(immunometabolism)涉及糖酵解、三羧酸循環、磷酸戊糖途徑和氨基酸代謝等細胞內代謝通路網絡,在調節免疫細胞反應中起著至關重要的作用。特別是,氨基酸,如色氨酸(Trp)、精氨酸、谷氨酰胺和亮氨酸的代謝可以影響腫瘤的進展和免疫細胞的增殖和分化。因此,通過調控與這些氨基酸代謝相關
低生物利用度的PROTAC藥物具有高成藥性
中國科學院上海藥物研究所研究員刁星星課題組、陳浩課題組,運用放射性標記技術,成功合成[14C]ARV-110作為PROTACs(蛋白水解靶向嵌合體)的代表性模型化合物,并揭示了PROTACs在口服生物利用度較低的情況下,依然能夠展現出良好的特異性和生物活性。相關研究發表于《藥物化學雜志》,并獲選封面
脂質體的分類
脂質體的分類1.脂質體按照所包含類脂質雙分子層的層數不同,分為單室脂質體和多室脂質體。小單室脂質體(SUV):粒徑約0.02~0.08um;大單室脂質體 (LUV)為單層大泡囊,粒徑在0.1~lum。多層雙分子層的泡囊稱為多室脂質體 (MIV),粒徑在1~5um之間。2.按照結構分:單室脂質體,多室
脂質體的特點
1、靶向性和淋巴定向性:肝、脾網狀內皮系統的被動靶向性。用于肝寄生蟲病、利什曼病等單核-巨噬細胞系統疾病的防治。如肝利什曼原蟲藥銻酸葡胺脂質體,其肝中濃度比普通制劑提高了200~700倍。2、緩釋作用:緩慢釋放,延緩腎排泄和代謝,從而延長作用時間。3、降低藥物毒性:如兩性霉素B脂質體可降低心臟毒性。
脂質體的分類
脂質體的分類1.脂質體按照所包含類脂質雙分子層的層數不同,分為單室脂質體和多室脂質體。小單室脂質體(SUV):粒徑約0.02~0.08um;大單室脂質體 (LUV)為單層大泡囊,粒徑在0.1~lum。多層雙分子層的泡囊稱為多室脂質體 (MIV),粒徑在1~5um之間。2.按照結構分:單室脂質體,多室
什么是脂質體?
脂質體(Liposomes)是由卵磷脂和神經酰胺等制得的脂質體(空心),具有的雙分子層結構與皮膚細胞膜結構相同,對皮膚有優良的保濕作用,尤其是包敷了保濕物質如透明質酸、聚葡糖苷等的脂質體是更優秀的保濕性物質。
脂質體的分類
1.脂質體按照所包含類脂質雙分子層的層數不同,分為單室脂質體和多室脂質體。小單室脂質體(SUV):粒徑約0.02~0.08μm;大單室脂質體 (LUV)為單層大泡囊,粒徑在0.1~lμm。多層雙分子層的泡囊稱為多室脂質體 (MIV),粒徑在1~5μm之間。2.按照結構分:單室脂質體,多室脂質體,多囊
脂質體的簡介
脂質體(liposome)是一種人工膜。在水中磷脂分子親水頭部插入水中,脂質體疏水尾部伸向空氣,攪動后形成雙層脂分子的球形脂質體,直徑25~1000nm不等。脂質體可用于轉基因,或制備的藥物,利用脂質體可以和細胞膜融合的特點,將藥物送入細胞內部 生物學定義:當兩性分子如磷脂和鞘脂分散于水相時,分
脂質體的分類
1.脂質體按照所包含類脂質雙分子層的層數不同,分為單室脂質體和多室脂質體。 小單室脂質體(SUV):粒徑約0.02~0.08um;大單室脂質體 (LUV)為單層大泡囊,粒徑在0.1~lum。 多層雙分子層的泡囊稱為多室脂質體 (MIV),粒徑在1~5um之間。 2.按照結構分:單室脂質體,
脂質體的特點
1、靶向性和淋巴定向性:肝、脾網狀內皮系統的被動靶向性。用于肝寄生蟲病、利什曼病等單核-巨噬細胞系統疾病的防治。如肝利什曼原蟲藥銻酸葡胺脂質體,其肝中濃度比普通制劑提高了200~700倍。 2、緩釋作用:緩慢釋放,延緩腎排泄和代謝,從而延長作用時間。 3、降低藥物毒性:如兩性霉素B脂質體可降
脂質體的優勢
脂質體是由脂雙分子層組成的顆粒,可介導基因穿過細胞膜。通過脂質體介導比利用病毒轉導進行基因轉移具有以下明顯的優勢:①脂質體與基因的復合過程比較容易;②易于大量生產;③脂質體是非病毒性載體,與細胞膜融合將目的基因導入細胞后,脂質即被降解,無毒,無免疫原性;④DNA或RNA可得到保護,不被滅活或被核酸酶
脂質體介導的真核細胞轉染實驗——脂質體進行穩定轉染
實驗材料哺乳動物細胞試劑、試劑盒DMEM儀器、耗材培養箱離心管實驗步驟1. ?接種細胞(見“脂質體介導短暫表達”步驟1)長至50%匯片。?2. ?制備DNA/脂質體混合物,轉染細胞(見“脂質體介導短暫表達”步驟2和3)。3. ?每孔細胞加入1 ml DMEM-20完全培養液,37℃ 培養箱培養48
脂質體的組成結構
脂質體的組成:類脂質(磷脂)及附加劑。1、磷脂類:包括天然磷脂和合成磷脂二類。磷脂的結構特點為一個磷酸基和一個季銨鹽基組成的親水性基團,以及由兩個較長的烴基組成的親脂性基團。 天然磷脂以卵磷脂(磷脂酰膽堿,PC)為主,來源于蛋黃和大豆,顯中性。 合成磷脂主要有DPPC(二棕櫚酰磷脂酰膽堿)、
脂質體的概念簡介
脂質體(liposome)是一種人工膜。在水中磷脂分子親水頭部插入水中,脂質體疏水尾部伸向空氣,攪動后形成雙層脂分子的球形脂質體,直徑25~1000nm不等。脂質體可用于轉基因,或制備的藥物,利用脂質體可以和細胞膜融合的特點,將藥物送入細胞內部生物學定義:當兩性分子如磷脂和鞘脂分散于水相時,分子的疏
脂質體的作用特點
1、靶向性和淋巴定向性:肝、脾網狀內皮系統的被動靶向性。用于肝寄生蟲病、利什曼病等單核-巨噬細胞系統疾病的防治。如肝利什曼原蟲藥銻酸葡胺脂質體,其肝中濃度比普通制劑提高了200~700倍。2、緩釋作用:緩慢釋放,延緩腎排泄和代謝,從而延長作用時間。3、降低藥物毒性:如兩性霉素B脂質體可降低心臟毒性。
簡述脂質體的分類
1.脂質體按照所包含類脂質雙分子層的層數不同,分為單室脂質體和多室脂質體。 小單室脂質體(SUV):粒徑約0.02~0.08um;大單室脂質體 (LUV)為單層大泡囊,粒徑在0.1~lum。 多層雙分子層的泡囊稱為多室脂質體 (MIV),粒徑在1~5um之間。 2.按照結構分:單室脂質體,
脂質體有哪些特點?
1、靶向性和淋巴定向性:肝、脾網狀內皮系統的被動靶向性。用于肝寄生蟲病、利什曼病等單核-巨噬細胞系統疾病的防治。如肝利什曼原蟲藥銻酸葡胺脂質體,其肝中濃度比普通制劑提高了200~700倍。 2、緩釋作用:緩慢釋放,延緩腎排泄和代謝,從而延長作用時間。 3、降低藥物毒性:如兩性霉素B脂質體可降
脂質體的制備方法
注入法、薄膜分散法、超聲波分散法、逆向蒸發法。 脂質體作為藥物載體的臨床應用 1、抗腫瘤藥物載體:阿霉素脂質體和順鉑脂質體已在國外上市。 2、抗寄生蟲藥物載體:苯硫咪唑脂質體和阿苯達唑脂質體等。利用脂質體的被動靶向性,提高藥物的生物利用度,減少用量,降低毒副作用。 3、抗菌藥物載體:慶大
脂質體的質量研究
粒徑 脂質體的粒徑一般為nm級,用光學顯微鏡和電子顯微鏡粗略測量其粒徑和粒徑分布。 測定包封率 測定包封率的關鍵是把未包封的游離藥物從脂質體上分離出來,常用的分離方法有柱層析法、透析法、超速離心法、超濾膜過濾法等。 滲漏率 滲漏率即為脂質體貯存期間包封率的變化情況,也就是貯存期間包封量
脂質體轉染的定義
脂質體是磷脂分散在水中時形成的脂質雙分子層,又稱為人工生物膜。
脂質體轉染技術特征
陽離子脂質體表面帶正電荷,能與核酸的磷酸根通過靜電作用將DNA分子包裹入內,形成DNA一脂復合體,也能被表面帶負電荷的細胞膜吸附,再通過膜的融合或細胞的內吞作用,偶爾也通過直接滲透作用,DNA傳遞進入細胞,形成包涵體或進入溶酶體?其中一小部分DNA能從包涵體內釋放,并進入細胞質中,再進一步進入核內轉
脂質體的功能特點
1、靶向性和淋巴定向性:肝、脾網狀內皮系統的被動靶向性。用于肝寄生蟲病、利什曼病等單核-巨噬細胞系統疾病的防治。如肝利什曼原蟲藥銻酸葡胺脂質體,其肝中濃度比普通制劑提高了200~700倍。2、緩釋作用:緩慢釋放,延緩腎排泄和代謝,從而延長作用時間。3、降低藥物毒性:如兩性霉素B脂質體可降低心臟毒性。
靶敏感脂質體定義
靶敏感脂質體(target-sensitive liposomes, TS-liposomes)是脂質體在與靶部位結合后能自動去穩定,將內容物釋放出來。對于內吞能力比較弱或沒有內吞能力的靶細胞來說,普通的免疫脂質體通常不能有效地釋放藥物。這時,靶敏感脂質體可能更有效,釋放的藥物通過跨膜轉運進入靶
關于脂質體的簡介
脂質體(liposome)是一種人工膜。在水中磷脂分子親水頭部插入水中,脂質體疏水尾部伸向空氣,攪動后形成雙層脂分子的球形脂質體,直徑25~1000nm不等。脂質體可用于轉基因,或制備的藥物,利用脂質體可以和細胞膜融合的特點,將藥物送入細胞內部 生物學定義:當兩性分子如磷脂和鞘脂分散于水相時,分
關于脂質體的介紹
脂質體(liposome)是一種人工膜。在水中磷脂分子親水頭部插入水中,脂質體疏水尾部伸向空氣,攪動后形成雙層脂分子的球形脂質體,直徑25~1000nm不等。脂質體可用于轉基因,或制備的藥物,利用脂質體可以和細胞膜融合的特點,將藥物送入細胞內部生物學定義:當兩性分子如磷脂和鞘脂分散于水相時,分子