納米尺度上傳播的自旋波生成
英國蘭卡斯特大學和荷蘭拉德堡德大學研究人員生成了一種可在納米尺度上傳播的自旋波,并發現了一種調節和放大它們的新途徑。這一成果發表在新一期《自然》雜志上,有望促進無耗散量子信息技術發展。傳統設備用電流工作會有能量損失,并向環境散熱。替代“有損”電流的一種方法是利用電子自旋而不是電荷,以波的形式存儲和處理信息。自旋可以看作是磁鐵的基本單位。被擾動后,自旋會脫離其平衡方向,圍繞其平衡位置進動(即旋轉)。在磁體中,相鄰的自旋耦合效應極強,形成凈磁化。由于這種耦合,自旋進動可以在磁性材料中傳播,從而產生自旋波。研究人員解釋說,在相鄰自旋相互傾斜的材料中,旋轉頻率最高。為了激發如此快速的自旋動力,他們使用了持續時間不到萬億分之一秒的超快光脈沖(比自旋波周期還要短)。此外,在納米尺度上產生超快自旋波還需要高能光子。他們研究的材料對紫外線光子能量表現出極強的吸收能力,從而在材料表面非常薄的區域(距表面僅幾十納米)激發出太赫茲(即1萬億赫茲)頻率......閱讀全文
納米尺度上傳播的自旋波生成
英國蘭卡斯特大學和荷蘭拉德堡德大學研究人員生成了一種可在納米尺度上傳播的自旋波,并發現了一種調節和放大它們的新途徑。這一成果發表在新一期《自然》雜志上,有望促進無耗散量子信息技術發展。傳統設備用電流工作會有能量損失,并向環境散熱。替代“有損”電流的一種方法是利用電子自旋而不是電荷,以波的形式存儲和處
納米尺度上傳播的自旋波生成
?有望促進無耗散量子信息技術發展英國蘭卡斯特大學和荷蘭拉德堡德大學研究人員生成了一種可在納米尺度上傳播的自旋波,并發現了一種調節和放大它們的新途徑。這一成果發表在新一期《自然》雜志上,有望促進無耗散量子信息技術發展。傳統設備用電流工作會有能量損失,并向環境散熱。替代“有損”電流的一種方法是利用電子自
韓國實現4D觀察量子自旋波
韓國浦項科技大學浦項加速器實驗室(PAL)科研團隊利用第四代線性同步加速器(X射線自由電子激光器)成功實現了對量子自旋波的4D觀察。 隨著大數據和人工智能的發展,硬盤等海量存儲設備變得更加重要。為提高磁性存儲設備的容量和處理速度,需要一種快速控制磁性材料特性的技術。科研團隊的核心技術就是利用共
“混血”納米設備可控制量子比特自旋
美國科學家使用其研發的獨特的金屬—半導體“混血”納米設備,演示了一種新的光和物質的相互作用,且在僅為幾納米的膠體納米結構中首次實現了對量子比特自旋進行完全的量子控制,這些新進展朝著制造出量子計算機邁開了更加關鍵的一步。該研究成果發表在7月1日的《自然》雜志上。 馬里蘭大學納
亞納米尺度單自旋信息點讀寫實現
日前,北京大學信息科學技術學院特聘研究員王永鋒與國內外學者合作,在單分子結構雙穩態的原位可逆調控研究方面取得進展,成功實現1平方納米尺度的單自旋信息點讀寫,相關成果發表于《物理評論快報》。 據悉,雙穩態分子通常具有不同的結構形態,可用作信息存儲的基元。然而,實現這種信息存儲功能的前提是須將單分
實驗證實:磁納米接觸可使自旋波“繁殖”
據美國物理學家組織網9月8日(北京時間)報道,瑞典科學家首次通過實驗證實,10年前科學家提出的磁性納米接觸會讓納米尺度的自旋波“繁殖”這一理論與觀察結果吻合。科學家們表示,最新研究表明,未來,納米尺度的自旋波在手機和無線網絡等諸多方面可取代微波,基于自旋波理論研制出的元件也更小、更
電子能量損失TEM
電子能量損失????????通過使用采用電子能量損失光譜學這種先進技術的光譜儀,適當的電子可以根據他們的電壓被分離出來。這些設備允許選擇具有特定能量的電子,由于電子帶有的電荷相同,特定能量也就意味著特定的電壓。這樣,這些特定能量的電子可以與樣品發生特定的影響。例如,樣品中不同的元素可以導致射出樣品的
特征能量損失峰
光電子經歷非彈性散射,會損失固定能量,這樣在主峰高結合能端形成伴峰,稱為特征能量損失峰。對于固體樣品,最重要的此類峰是等離子損失峰。
電子能量損失譜
電子能量損失譜( Electron energy-loss spectroscopy, EELS)入射電子穿透樣品時,與樣品發生非彈性相互作用,電子將損失一部分能量。如果對出射電子按其損失的能量進行統計計數,便得到電子的能量損失譜。由于非彈性散射電子大都集中分布在一個頂角很小的圓錐內,適當地放置探頭
中尺度渦與近慣性內波之間的能量傳遞規律獲揭示
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507609.shtm
電子能量損失譜-的簡介
電子能量損失譜 (EELS)?是測量電子在與樣品相互作用后的動能變化的一系列技術。該技術用于確定樣品的原子結構和化學特性,包括:元素的種類及數量、元素的化學狀態以及元素與近鄰原子的集體相互作用。
研究發現化學反應中自旋軌道分波的量子干涉現象
中國科學技術大學王興安教授課題組與中國科學院大連化學物理研究所孫志剛研究員和楊學明院士課題組合作,發現了基元化學反應中自旋軌道分波的量子干涉現象,揭示了電子自旋-軌道相互作用對化學反應動力學過程的影響。這一研究成果于2021年2月26日發表在《科學》(Science)雜志上。 自1925年烏倫貝
Nature子刊!國儀量子EPR助力納米自旋傳感器研究
基于量子特性,電子自旋傳感器具有高靈敏度,可以廣泛應用于探測各種物理化學性質,如電場、磁場、分子或蛋白質動力學以及核或其他粒子等。這些獨特的優勢和潛在應用場景,使基于自旋的傳感器成為當前熱點的研究方向。Sc3C2@C80具有由碳籠保護的高度穩定的電子自旋,適用于多孔材料內的氣體吸附檢測。Py-C
Kagome量子自旋液體分數化自旋激發獲得新思路
量子自旋液體是一種新的物質形態,可用拓撲序的長程多體糾纏來描述。量子自旋液體備受關注,這是由于其在高溫超導機制和量子計算中的廣闊應用,更源于其背后深刻的物理機制。自旋1/2的Kagome晶格反鐵磁體系具有強烈的幾何阻挫和量子漲落,是可能存在量子自旋液體的典型模型。ZnCu3(OH)6Cl2是第一
電子能量損失譜法的性質
由于低原子序數元素的非彈性散射幾率相當大,因此EELS技術特別適用于薄試樣低原子序數元素如碳、氮、氧、硼等的分析。它的特點是:分析的空間分辨率高,僅僅取決于入射電子束與試樣的互作用體積;直接分析入射電子與試樣非彈性散射互作用的結果而不是二次過程,探測效率高。一般來說,X射線波譜儀(XWDS)的接收效
電子能量損失譜儀的簡介
中文名稱電子能量損失譜儀英文名稱electronic energy loss spectrometer定 義測量試樣非彈性散射電子能量的電子能譜儀。應用學科機械工程(一級學科),分析儀器(二級學科),能譜和射線分析儀器-能譜和射線分析儀器儀器和附件(三級學科)
科學家首次觀察到磁振子拖曳
據美國物理學家組織網12月19日(北京時間)報道,西班牙卡特蘭納米技術研究院研究人員稱,他們在一項最新發現中首次觀察到了磁振子拖曳。這一發現結束了科學家50年來追尋獨立熱電效應的歷程,對研究能量轉化應用、開發自旋信息傳輸新途徑也具有重要意義。相關論文發表在12月18日《自然·材料學》雜志網站上。
二維磁鐵中觀察到磁振子自旋
據最新一期《自然》雜志報道,美國多家大學和橡樹嶺國家實驗室的合作研究表明,磁性半導體溴化鉻中的磁振子可與激子配對,激子準粒子會發光,從而為研究人員提供了一種 “看到”旋轉準粒子的途徑。 所有磁鐵,從簡單的冰箱貼到計算機中的內存磁盤、再到實驗室研究使用的強磁體,都包含稱為磁振子的旋轉準粒子。
室溫下量子材料實現“自旋”控制
科技日報北京8月16日電?(記者張佳欣)據《自然》雜志16日報道,英國劍橋大學領導的一個國際研究團隊找到了一種控制有機半導體中光和量子“自旋”相互作用的方法,即使在室溫下也能發揮作用,為潛在的量子應用開辟了新前景。幾乎所有量子技術都涉及自旋。電子運動時通常會形成穩定的電子對,一個電子自旋向上,一個電
人類首次直接“看到”量子自旋效應
據新加坡國立大學(NUS)官網近日報道,該校科學家領導的國際科研團隊,首次直接“看到”拓撲絕緣體和金屬中電子的量子自旋現象,為未來研發先進的量子計算組件以及設備鋪平了道路,距離實現量子計算又近了一步。 量子計算機目前仍處于研發的初期階段,但其展現出的計算速度已經是傳統技術的數百萬倍,其非凡的處
量子精密測量技術重構納米級分辨率
微波是指波長在大約在1米至1毫米、對應頻率在約300MHz到300GHz范圍之間的電磁波,自19世紀末德國物理學家海因里希·赫茲首次產生微波信號以來,微波就被迅速應用到軍事國防、雷達通訊中,并且很快擴展到信息技術、導航、半導體器件等領域,體現了一個國家的科技水平和競爭實力。 微小型化、高度集成
量子點自旋馳豫誘導分子三線態生成新機制
近日,大連化物所光電材料動力學研究組(1121組)吳凱豐研究員團隊在量子點光化學應用領域研究中取得新進展,揭示了一種量子點自旋馳豫誘導分子三線態生成的新機制,并探索了該機制的重要應用。 傳統意義上,自旋相關的量子現象研究是物理學的范疇,但近年來化學家合成的各類材料也
簡述電子能量損失譜法的定義
電子能量損失譜分析簡稱EELS(Electron Energy Loss Spectroscopy)是利用入射電子束在試樣中發生非彈性散射,電子損失的能量DE直接反映了發生散射的機制、試樣的化學組成以及厚度等信息,因而能夠對薄試樣微區的元素組成、化學鍵及電子結構等進行分析。
關于電子能量損失譜法的簡介
電子能量損失譜 (EELS) 是測量電子在與樣品相互作用后的動能變化的一系列技術。該技術用于確定樣品的原子結構和化學特性,包括:元素的種類及數量、元素的化學狀態以及元素與近鄰原子的集體相互作用。部分技術包括:光譜、能量過濾透射電子顯微術 (EFTEM) 和DualEELS
離心泵的能量損失及效率
離心泵的能量損失及效率 原動機傳給泵軸的功率不能全部轉換為有效功率,即不能全部用來增加液體的能量。由于其中一部分能量在泵軸旋轉過程中消耗掉了,一部分能量在泵內損失掉了,所以泵的有效功率總是小于軸功率。 按離心泵能量損失形式不同,可分為:機械損失、容積損失和水力損失。 1、
中國科大實現室溫大氣環境下單核自旋簇的靈敏探測
日前,中國科大杜江峰教授研究組成功地在室溫大氣環境下實現了單核自旋對的探測及其原子尺度的結構分析,該研究成果發表在11月24日出版的Nature Physics上。 傳統的自旋磁共振譜儀基于系綜探測原理,它的測試對象是含有百億個以上相同自旋的系綜樣品。受限于傳統的探測方式,室溫大
學家實驗模擬出量子自旋液體
1965年諾貝爾物理學獎得主菲利普·沃倫·安德森在1973年首次提出一種新物質狀態——量子自旋液體。其不同性質在高溫超導和量子計算機等量子技術領域有著廣闊的應用前景。但問題在于,從未有人見過這種物質狀態,至少近50年來一直如此。如今,哈佛大學領導的一個物理學家團隊表示,他們終于通過實驗模擬并分析
量子材料內首次測量電子自旋
原文地址:http://news.sciencenet.cn/htmlnews/2023/6/502752.shtm一個國際研究團隊首次成功測量了一類新型量子材料內的電子自旋,這一成就有望徹底改變未來量子材料的研究方式,為量子技術的發展開辟新途徑,并在可再生能源、生物醫學、電子學、量子計算機等諸多領
美揭示量子自旋液體的存在機理
據美國物理學家組織網8月15日報道,美國馬里蘭大學伯克分校聯合量子研究所(JQI)、美國國家標準與技術研究院(NIST)和喬治敦大學的科學家揭示了物質的量子狀態——自旋液體的存在機理,有望加深科學家對超導性的理解。相關研究結果發表在8月12日出版的《物理學評論快報》上。 自旋
“基于核自旋量子調控的固態量子計算研究”通過驗收
10月22日,由中國科學技術大學杜江峰教授主持的國家重大科學研究計劃“基于核自旋量子調控的固態量子計算研究”項目課題結題驗收會在合肥召開。中科院理論物理所于淥院士、中科院武漢物數所葉朝輝院士、清華大學朱邦芬院士等擔任課題結題驗收組專家。科技部基礎司、中科院基礎局相關領導以及中國科大校長侯建國等出