長春光機所突破航天高分辨率高光譜成像關鍵技術
日前,中國科學院長春光學精密機械與物理研究所突破了航天高分辨率高光譜成像關鍵技術。該技術利用離軸三反非球面光學系統、復合棱鏡分光、推掃成像和指向鏡運動補償技術,有效解決了航天高光譜遙感中高空間分辨率、高光譜分辨率與圖像高信噪比之間的矛盾,突破了視場分離、光譜分光、在軌光譜輻射定標等關鍵技術瓶頸,為我國航天高分辨率高光譜成像技術的工程化奠定了技術基礎。 長春光機所研究員顏昌翔及其研究團隊針對航天高光譜遙感領域的視場分離、光譜分光、圖像信噪比、在軌光譜輻射定標等關鍵技術瓶頸提出了一系列創新性的解決方法。研究團隊采用離軸三反非球面光學系統、單晶硅無基底狹縫的視場分離器和復合棱鏡分光加非球面準直成像光譜儀的技術方案,實現了全色、可見近紅外和短波紅外三光路準確分離,保證了系統寬波長覆蓋,并實現了高光譜和高空間分辨率、高信噪比,保證了光譜成像質量。該團隊采用指向鏡運動補償方案,建立了在軌實時計算指向鏡運動補償曲線的數學模型,實現了......閱讀全文
高光譜成像光譜儀
高光譜成像光譜儀是一種用于農學領域的分析儀器,于2016年8月11日啟用。 技術指標 技術參數:光譜范圍1.0–2.5μm;空間像素384;F數F2.0,FOV16°;像素跨軌和延軌FOV,跨軌:0.73毫弧度,延軌:0.73毫弧度;光譜SAMPL5.45nm;噪聲150e;峰值信噪比>11
高光譜圖像成像原理
光源相機(成像光譜儀+ccd)裝備有圖像采集卡的計算機是高光譜成像技術的硬件組成,其光譜的覆蓋范圍為200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光譜相機的主要組成部分為準直鏡,光柵光譜儀,聚焦透鏡以及面陣ccd。 其掃描過程是當ccd探測器在光學
高光譜成像原理
高光譜成像是一種遙感技術,它可以通過獲取地物的高光譜圖像來實現物質識別、分類和定量分析等目標。高光譜成像技術的原理是基于地物物質吸收、反射和輻射特性的不同而實現的。高光譜成像技術的原理主要包括以下幾個方面:一、光譜分辨率高光譜成像技術采用的是光譜分辨率比較高的成像儀器,它能夠獲取較高的空間分辨率和光
高光譜成像光譜掃描的概念
高光譜成像是一種新興的技術,可以在儀器的視場范圍內同時快速測量和分析多個物體的光譜構成。這些成像系統用在多個工業和商業領域,比如高速在線檢測和嚴密的質量控制工序。一般說來,在加工應用中捕捉精確的光譜信息,面臨著機器視覺系統簡單或單點光譜(single-point)測量的問題。這些儀器系統的成本很高,
光學精密工程-|-輕小型高分辨率星載高光譜成像光譜儀
摘 要 在小型化成像光譜儀的研制和應用中,如何同時實現輕量化、高地面分辨率和高信噪比是目前亟待突破的技術難題。本文通過將線性漸變濾光片分光技術和數字域時間延遲積分技術相結合,并對鏡頭進行緊湊化處理,設計了一款工作波段為403~988 nm、平均光譜分辨率為8.9 nm、系統總質量為7 kg的輕
超微型高光譜成像光譜儀機
超微型高光譜成像光譜儀機是一種用于農學、水利工程領域的分析儀器,于2019年8月6日啟用。 技術指標 1. 全反射同心光學設計,原始凸面全息光柵; 2. 光譜測量范圍:400 nm~1000nm; 3. 數值孔徑:F/2.5; 4. 光譜分辨率(FWHM):6nm; 5. 光譜通道數:270
高光譜遙感成像原理及特點
高光譜遙感(hyperspectral remote sensing)是高光譜分辨率遙感(highspectral resolution remote sensing)的簡稱,是在電磁波譜的可見光、近紅外、中紅外和熱紅外波段范圍內,獲取許多非常窄、光譜連續影像數據的技術。 高光譜遙感源于20世
多光譜和高光譜成像技術透視絲路壁畫
如何充分獲取古代珍貴壁畫內部信息,有效保護人類珍貴遺產?這一曾經困擾文保專家的難題,在非介入式成像技術廣泛應用下迎刃而解。12月1日至3日,由英國諾丁漢特倫特大學發起,英國研究理事會支持,陜西歷史博物館、西安文保中心等單位協辦,西北大學文化遺產學院主辦的“成像科學與絲綢之路沿線壁畫保護
高光譜成像儀的成像技術原理
高光譜成像儀是新一代傳感器。在20世紀80年代初正式開始研制。研制這類儀器的主要目的是想在獲取大量地物目標窄波段連續光譜圖像的同時,獲得每個像元幾乎連續的光譜數據,因而稱為成像光譜儀。目前成像光譜儀主要應用于高光譜航空遙感。在航天遙感領域高光譜也開始應用。 高光譜成像技術 高光譜成像
高光譜成像儀的成像技術原理
高光譜成像儀是新一代傳感器。在20世紀80年代初正式開始研制。研制這類儀器的主要目的是想在獲取大量地物目標窄波段連續光譜圖像的同時,獲得每個像元幾乎連續的光譜數據,因而稱為成像光譜儀。目前成像光譜儀主要應用于高光譜航空遙感。在航天遙感領域高光譜也開始應用。 高光譜成像技術 高光譜成像技術是基
機載高速成像光譜儀瞬間獲得高光譜圖像
機載高速成像光譜儀S185采用革命性的畫幅式高光譜成像技術,能夠以快照式的速度進行所有光譜通道同步成像;該技術融合了高光譜數據的精確性和快照成像的高速性,能夠瞬間獲得整個視場范圍內精確的高光譜圖像。 通過此款光譜儀可以簡便地在1/1000秒內獲得整個高光譜立方體數據,配套功能強大的測量及數
高光譜成像在國內的發展
上世紀80年代初、中期,在國家科技攻關項目和863計劃的支持下,我國亦開展了高光譜成像技術的獨立發展計劃。我國高光譜儀的發展,經歷了從多波段到成像光譜掃描,從光學機械掃描到面陣推掃的發展過程。 根據我國的使用情況先后開發出了滿足海洋環境監測和森林探火的需求的以紅外和紫外波段以及以中波和長波紅外
長春光機所突破航天高分辨率高光譜成像關鍵技術
日前,中國科學院長春光學精密機械與物理研究所突破了航天高分辨率高光譜成像關鍵技術。該技術利用離軸三反非球面光學系統、復合棱鏡分光、推掃成像和指向鏡運動補償技術,有效解決了航天高光譜遙感中高空間分辨率、高光譜分辨率與圖像高信噪比之間的矛盾,突破了視場分離、光譜分光、在軌光譜輻射定標等關鍵技術瓶頸,
應用高光譜成像技術監測物種入侵
Steven Jay1?– Research AssistantDr. Rick Lawrence1?– Associate ProfessorDr. Kevin Repasky2?– Associate ProfessorCharlie Keith2?– Research Assistant1De
高光譜成像在農業方面的應用
成像信息定量獲取的領域被高光譜成像技術所拓寬,由于運用越來越廣泛也逐漸成為農業成像應用的重要前沿技術手段。 在農業方面作物長勢情況,災害監控和農業管理等方面我們都可以使用高光譜數據不僅能準確地反映田間作物本身的光譜特征以及作物之間光譜差異,也可以更精準地獲取一些農學的信息,比如作物含水量,葉綠
高光譜成像技術用于海關檢驗檢疫
在當前全世界新冠疫情持續蔓延的背景下,進口海鮮產品樣本頻繁檢出新冠病毒的新聞引起了全社會對海關檢驗檢疫的關注。檢驗檢疫實際上是為了保證進出口商品、動植物及其運輸設備的安全和衛生符合國家有關法律法規規定;防止次劣產品、有害商品、動植物以及危害人類和環境的病蟲害和傳染源的輸入和輸出,保障生產建設安全和人
高光譜成像在國外的發展
1983年,世界上第一臺成像光譜儀AIS-1在美國研制成功,并在礦物填圖、植被生化特征等方面取得了成功,顯示出了高光譜遙感的魅力。 在此后,許多國家都先后研制航空成像光譜儀。如美國的AVIRIS、DAIS,加拿大的FLI、CASI,德國的ROSIS,澳大利亞的HyMap等。 如今美國已經研制
高光譜成像在軍事方面的應用
由于高光譜遙感在地面目標識別方面的優勢,很早就被應用于軍事領域并且逐步取代多光譜遙感成為主要偵察手段 (1)戰場詳細偵察 高光譜遙感儀器能夠在連續的工作波段上同時對目標進行探測,可以直接反應被測的物體的光譜特征,能夠分辨出目標表面成分和狀態,可以得到空間探測信息與地面實際目標之間存在的精確對
植物表型成像系統WIWAM-Screening功能高光譜成像分析
高光譜成像分析(選配),可成像并分析如下參數 1) 歸一化指數 2) 簡單比值指數 3) 改進的葉綠素吸收反射指數 4) 較優化土壤調整植被指數 5) 綠度指數 6) 改進的葉綠素吸收反射指數 7) 轉換類胡羅卜素指數 8) 三角植被指數 9) ZMI指數 10) 簡單比值色
無人機高光譜成像系統相關簡述
無人機高光譜成像系統是一種用于化學、農學、環境科學技術及資源科學技術領域的分析儀器,于2019年4月19日啟用。 技術指標 該設備通過搭載平臺旋翼無人機搭載的GaiaField-mini光譜儀 掃描速度(line images/s):160幀(2x Binning)/秒,7秒鐘采集一個數據立
高光譜成像儀工作原理與應用
工作原理高光譜成像儀將成像技術和光譜技術結合在一起,在探測物體空間特征的同時并對每個空間像元色散形成幾十個到上百個波段帶寬為10nm左右的連續光譜覆蓋。根據成像光譜儀的掃描方式,其工作原理也不盡相同,作為光學成像儀成像的一個例子,這里簡述一下焦平面探測器推掃成像原理。應用:應用范圍遍及化學、物理學、
SpectrAPP高光譜成像技術監測傷口愈合過程
???? 傷口愈合過程是各種組織的再生共同作用的結果。創傷愈合的基本過程為:急性炎癥期→細胞增生期→瘢痕形成期→表皮及其它組織再生。治療不同原因(如創傷或慢性疾病)造成的傷口需要完全不同的臨床護理方式,所以傷口的嚴重程度及愈合活力的評估是確定治療方法的先決條件。????? 傳統的活體組織檢查
高光譜成像在植被研究中的應用
高光譜超多波段的成像光譜數據為植被分類識別提供了比以往更加詳細的信息,基于高光譜遙感的植被識別精度遠遠超出了常規所能獲取信息的精確性和可靠性,體現出高光譜在植被信息獲取能力方面的巨大優勢。 高光譜成像還應用于生態環境梯度制圖、光合作用色素含量提取、植被干物質信息提取、植被生物多樣性監測、土壤屬
高光譜成像顯神通-“護駕”古畫文物修復
文物修復是一門技術,最早的文物修復只能用人的手和眼尋找細小的破綻,目前我們可以用的科學儀器有很多,例如高光譜成像技術、X光等。這些儀器簡化人工繁復的步驟,現代儀器設備可以大顯身手。繼同名紀錄片和電影之后,圖書《我在故宮修文物》于近日出版,文物修復再度成為人們關注的熱點。確實,正如片中所展示的
高光譜成像在地質調查中的應用
區域地質制圖和礦產勘探是高光譜技術主要的領域也是高光譜成像應用中最成功的一個領域。如今地面光譜儀主要有澳大利亞的PIMA,美國的ASD,GER,熱紅外FT-IR等,國內的有中科院研發的OMIS系列,PHI等。 利用高光譜遙感(含熱紅外高光譜)進行礦物識別可分為3個層次:礦物種類識別、礦物含量識
高光譜成像在海洋研究中的應用
高光譜成像是當前海洋成像前沿領域。由于中分辨率成像光譜儀具有光譜覆蓋范圍廣、分辨率高和波段多等許多優點,因此已成為海洋水色、水溫的有效探測工具。它既可用于海水中葉綠素濃度、懸浮泥沙含量、某些污染物和表層水溫探測,還可用于海冰、海岸帶等的探測。 國內海洋遙感應用基礎研究主要是一些數學模型的構建。
高光譜技術高在哪
不同物質有它獨屬的“指紋光譜”,高光譜遙感技術可準確捕獲這一重要信息,提高人眼及遙感觀測能力。 看過紀錄片《我在故宮修文物》的觀眾或許會對如下場景有印象:技術人員用一臺儀器掃描古字畫,掃描信息經過專業處理后,文物修復專家就能發現字畫上肉眼看不見的信息,甚至還能分析出繪畫技法和當時用的顏料。
利用高光譜成像評估分析皮膚燒傷深度
燒傷深度分級對處理和治療皮膚燒傷至關重要。盡管到目前為止測試評估燒傷深度種類繁多,但都沒有獲得廣泛的臨床應用。羅馬尼亞卡羅爾戴維拉醫藥大學利用Specim高光譜成像結合光譜指數的技術進行燒傷深度評估的新方法,該技術利用特定的光譜帶來繪制具有不同燒傷程度的皮膚區域。光譜指數放大了正常皮膚和具有不同燒傷
熒光光譜儀的光譜分辨率
光譜分辨率是指把光譜特征、譜帶分解成為分離成分的能力。分析人員需要什么樣的光譜分辨率取決于所面對的具體問題。一般,用于基本樣品識別的常規分析只需要低/中光譜分辨率。對于樣品峰位移動或受外在環境因素影響而引起峰位移動的表征則通常需要高分辨率,因為這些現象在熒光光譜上僅僅表現為非常細微的變化,在低分辨率
成像光譜方法技術
一方面,高光譜分辨率的成像光譜遙感技術是對多光譜遙感技術的繼承、發展和創新,因此,絕大部分多光譜遙感數據處理分析方法,仍然可用于高光譜數據;另一方面,成像光譜技術具有與多光譜技術不一樣的技術特點,即高光譜分辨率、超多波段(波段<1000,通常為100~200個左右)和甚高光譜(Ultra Spect