RNAi是在研究秀麗新小桿線蟲(C. elegans)反義RNA(antisense RNA)的過程中發現的,由dsRNA介導的同源RNA降解過程。1995年,Guo等發現注射正義RNA(sense RNA)和反義RNA均能有效并特異性地抑制秀麗新小桿線蟲par-1基因的表達,該結果不能使用反義RNA技術的理論做出合理解釋。直到1998年,Fire等證實Guo等發現的正義RNA抑制同源基因表達的現象是由于體外轉錄制備的RNA中污染了微量dsRNA而引發,并將這一現象命名為RNAi。此后dsRNA介導的RNAi現象陸續發現于真菌、果蠅、擬南芥、錐蟲、水螅、渦蟲、斑馬魚等多種真核生物中,并逐漸證實植物中的轉錄后基因沉默(posttranscriptional gene silencing,PTGS)、共抑制(cosuppression)及RNA介導的病毒抗性、真菌的抑制(quelling)現象均屬于RNAi在不同物種的表現形式。19......閱讀全文
RNAi是在研究秀麗新小桿線蟲(C. elegans)反義RNA(antisense RNA)的過程中發現的,由dsRNA介導的同源RNA降解過程。1995年,Guo等發現注射正義RNA(sense RNA)和反義RNA均能有效并特異性地抑制秀麗新小桿線蟲par-1基因的表達,該結果不能使用反義RN
RNAi是在研究秀麗新小桿線蟲(C. elegans)反義RNA(antisense RNA)的過程中發現的,由dsRNA介導的同源RNA降解過程。1995年,Guo等發現注射正義RNA(sense RNA)和反義RNA均能有效并特異性地抑制秀麗新小桿線蟲par-1基因的表達,該結果不能使用反義RN
日本東京大學官網近日宣布,東京大學和京都大學研究人員發現了核糖核酸干擾(RNAi)的分子機制。所謂核糖核酸干擾,就是單分子RNA分裂時出現的某種蛋白質合成受到抑制的現象。 由于借助RNAi可以關閉特定基因的表達,科學家一直期待RNAi現象在醫療領域得到應用。在先前研究中,科學家已經發現RNAi
20世紀80年代初,胚胎干細胞分離和體外培養的成功為基因敲除奠定了技術基礎。1985年,首次證實的哺乳動物細胞中同源重組(homology recombination, HR)的存在為基因敲除奠定了理論基礎[2]。為了編輯基因,傳統的靶向特定等位基因的同源重組技術被使用,但是,這個方法在當年來說,存
研究人員在新一期英國《自然》雜志發表報告說,他們通過動物實驗發現一種與心臟衰老有關的核糖核酸(RNA)片段,這一成果有望為心血管疾病的防治提供新思路。 德國法蘭克福大學的研究人員說,衰老導致的心臟細胞減少和心臟功能減退是引發心血管疾病的重要原因,而一個被稱為“miR-34a”的短RNA片段
1.高效性:Elbashir等在研究中發現分別為25 nmol/L與100 nmol/L的起始雙鏈RNA產生的結果是一樣的,只是高濃度起始的更有效些。將雙鏈RNA濃度降低到1.5 nmol/L時產生的基因沉默效果變化不大,只有當濃度降低到0.05 nmol/L時,沉默的效果才消失。Holen等也證實
RNA干擾(RNA interference,RNAi)是指在進化過程中高度保守的、由雙鏈RNA(double-stranded RNA,dsRNA)誘發的、同源mRNA高效特異性降解的現象。基因沉默,主要有轉錄前水平的基因沉默(TGS)和轉錄后水平的基因沉默(PTGS)兩類:TGS是指由于DNA修
dsRNA消化法的主要優點在于可以跳過檢測和篩選有效siRNA序列的步驟,為研究人員節省時間和金錢(注意:通常用RNAse III通常比用Dicer要便宜)。不過這種方法的缺點也很明顯,就是有可能引發非特異的基因沉默,特別是同源或者是密切相關的基因。現在多數的研究顯示這種情況通常不會造成影響。最
3.DEAE-葡聚糖和polybrene帶正電的DEAE-葡聚糖或polybrene多聚體復合物和帶負電的DNA分子使得DNA可以結合在細胞表面。通過使用DMSO或甘油獲得的滲透休克將DNA復合體導入。兩種試劑都已成功用于轉染。DEAE-葡聚糖僅限于瞬時轉染。4.機械法轉染技術也包括使用機械的方法,
近年來的研究表明,將與mRNA對應的正義RNA和反義RNA組成的雙鏈RNA(dsRNA)導入細胞,可以使mRNA發生特異性的降解,導致其相應的基因沉默。這種轉錄后基因沉默機制(post-transcriptional gene silencing, PTGS)被稱為RNA干擾(RNAi)。一、R