<li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • Antpedia LOGO WIKI資訊

    有機無機雜化寬光譜探測器研究獲進展

    有機-無機雜化寬光譜探測器研究獲進展 近年來,有機-無機復合的光探測器以其低能耗,響應速度快,體積和重量顯著減小,且易大面積生產,高機械柔性等特點引起人們的極大關注,同時,該器件在光通信,觸感器,紅外探測等軍事和國民經濟的各個領域有著廣泛的應用。 由于該器件不僅結合的有機半導體易大規模生成,低成本,制備工藝簡單,易調控,且具有特殊的機械靈活性的特性,同時,配合了無機半導體材料本身固有的高遷移率,良好的結晶性,較寬的光探測范圍等特點,引起了研究者們的關注。 中科院半導體所超晶格國家重點實驗室沈國震研究員與香港科技大學范智勇教授、華中科技大學朱明強教授等團隊合作,設計了集有機物PCBM和無機Cd3P2納米線的柔性有機無機雜化全光譜光電探測器。該研究首先采用化學氣相沉積法合成了高質量的p型Cd3P2半導體納米線,然后將其與n型有機半導體PCBM進行復合,形成具有p-n結結構的......閱讀全文

    第386次香山科學會議聚焦碳基半導體界面科學與工程

      硅材料在20世紀迅猛發展不僅得益于人們對界面科學與工程的深入研究,而且更是將廣泛應用的半導體微電子學帶入千家萬戶。出席日前在蘇州舉行的以“碳基半導體界面科學與工程”為主題的第386次香山科學會議的專家指出,碳基半導體界面科學與工程方面是一個非常復雜的體系,還有許多重大的科學問題亟待解決

    《科學》雜志聚焦納米技術應用

      中科院外籍院士王中林預言納米發電機將影響人們日常生活,《科學》雜志聚焦納米技術應用——對納米科技專家王中林來說,2010年是興奮、突破也是充滿希望的一年  3月28日,英國《自然—納米技術》報道了他的研究小組的兩項研究新成果:具有高電壓輸出的納米發電機、首次實現基于納米線的自驅動

    王中林研究組創立壓電電子學和壓電光電子學

      王中林是中國科學院外籍院士、美國佐治亞理工學院董事教授。據佐治亞理工學院新聞中心報道,王中林小組發明了一種基于壓電效應的新型納米電子邏輯器件。這種邏輯器件的開關可以通過外加在氧化鋅納米線上的應力所產生的電場調控,進而實現基本和復雜的邏輯功能;這是他開創的壓電電子學(Piezo

    《納米快報》:一維半導體納米結構光子學

    在基金委青年基金、納米重點項目和國家納米測試基金及973課題的支持下,湖南大學納米技術研究中心潘安練、鄒炳鎖教授等團隊成員和北京大學、國家納米中心以及德國馬普研究所合作,在一維半導體納米結構光子學的研究上取得了重大突破:首次正式提出了半導體一維納米結構中光子輸運的概念,建立光傳播的理論模型,并在實驗

    硅納米線將繪電子器件新版圖

      雖然我國目前已經初步實現了硅納米晶體管、傳感器等納米器件的部分功能,但是離納米器件的大規模集成還有相當大的距離。   美國斯坦福大學研究人員已經研發出用硅納米線制成的“紙電池”。   當全世界的科學家一窩蜂地關注碳納米管時,殊不知,另一種一維納米材料硅納米線同樣能給人帶來意想不到的驚喜。

    我國在大直徑半導體碳納米管手性結構實現宏量分離

      從概念上講,碳納米管是由石墨烯卷曲形成的一維管狀分子,它不僅具有石墨烯優異的力學、熱學性能以及極高的載流子遷移率等特點,而且具有結構可調的能隙結構,表現出優異的電子以及光電子特性,是制備高速、低功耗、高集成度電子和光電子集成回路的理想材料。相對于傳統的Si基半導體器件,碳納米管電子器件的能效能夠

    蘇州納米所印刷碳納米管晶體管與CMOS電路研究獲進展

      由于碳納米管具有獨特的電學性能、機械性能、優越的物理和化學穩定性以及容易墨水化,使得碳納米管成為印刷薄膜晶體管,尤其是印刷柔性薄膜晶體管最理想的半導體材料之一。盡管半導體碳納米純化技術已日趨成熟,但高純度半導體碳納米管的可印刷墨水批量化制備、碳納米管的準確定位和高性能n型印刷碳納米管晶體管的構建

    蘇州納米所印刷碳納米管薄膜晶體管研究取得進展

      印刷電子技術是最近5年來才在國際上蓬勃發展起來的新興技術與產業領域,印刷電子技術成為當今多學科交叉、綜合的前沿研究熱點。高性能新型印刷電子墨水的研制成為印刷電子技術最關鍵的技術之一。半導體碳納米管與其他半導體材料相比不僅尺寸小、電學性能優異、物理和化學性質穩定性好,而且碳納米管構建的晶體管等電子

    五部委發布137項優先發展高技術產業領域指南(2011年度)

      發改委網站2011年10月20日刊文,由發改委、科技部、工信部、商務部、知識產權局聯合研究審議的 《當前優先發展的高技術產業化重點領域指南(2011年度)》,現予以發布。《指南》確定了當前優先發展的信息、生物、航空航天、新材料、先進能源、現代農業、先進制造、節能環保和資源綜合利用、海洋、高技

    朱道本院士:做出有自己特色的研究

       朱道本院士(資料圖片)   香山科學會議上院士云集不罕見,但新科院士中最年輕的幾位都擔當會議執行主席卻比較少見;主題評述報告中介紹該領域國內外最新研究成果不少見,但最新成果中有三分之一都出自中國科學家的卻比較罕見。在主題為“分子納米材料與器件”的第337次香山科學會議上,執行主席朱道本院士

    真空互聯技術可實現新型半導體材料和器件創新

       日前,由中科院蘇州納米所牽頭承辦的第608次香山科學會議在蘇州舉行,來自國內外的40多位專家學者參會。本次大會的主題為“化合物半導體器件的異質集成與界面調控”,中科院院士李樹深、黃如、中科院蘇州納米所所長楊輝、香港大學教授謝茂海擔任本次大會的執行主席。  半導體與集成電路在人類社會各領域的應用

    科技司解讀《“十三五”材料領域科技創新專項規劃》

      為推動我國材料領域科技創新和產業化發展,近日,科技部發布了《“十三五”材料領域科技創新專項規劃》(國科發高[2017]92號,以下簡稱《專項規劃》)。為了更好地貫徹和執行,科技部高新司對《專項規劃》的有關內容進行了解讀。   一、關于《專項規劃》編制的背景   為貫徹落實《國家創新驅動發展戰略綱

    十三五科技創新規劃發布

    三、發展智能綠色服務制造技術圍繞建設制造強國,大力推進制造業向智能化、綠色化、服務化方向發展。發展網絡協同制造技術,重點研究基于“互聯網+”的創新設計、基于物聯網的智能工廠、制造資源集成管控、全生命周期制造服務等關鍵技術;發展綠色制造技術與產品,重點研究再設計、再制造與再資源化等關鍵技術,推動制造業

    王中林小組研制出纖維納米發電機

    有關成果發表于2月14日出版的《自然》雜志 從2006年開始,王中林小組相繼發明了納米發電機、直流發電機。在2006年他首次提出了壓電電子學(Piezotronics)的概念和新研究領域。由于氧化鋅具有獨特的半導體和壓電性質,彎曲的氧化鋅納米線能在其拉伸的一面產生正電勢,壓縮的一面產生負電勢。氧

    納米所與索尼聯合研發半導體材料與器件

      6月23日下午,中科院蘇州納米技術與納米仿生研究所與索尼公司半導體材料與器件合作項目啟動簽約儀式在蘇州納米所舉行。研究所所長楊輝代表蘇州納米所與索尼公司高級副總裁熊谷簽訂合作協議,同時,索尼公司將向蘇州納米所提供分子束外延(MBE)裝置的免費使用權。中科院副院長施爾畏,蘇州工業園

    “納米科技”重點專項項目聯合召開啟動實施會議

    2018年9月25日,國家重點研發計劃“納米科技”重點專項項目“高性能中遠紅外半導體激光器與探測成像芯片及應用”和“多場耦合納米異質結構光電子器件的基礎研究”在北京聯合召開啟動實施會議。專項總體專家組專家祝世寧院士、劉明院士、黃如院士以及同行專家解思深院士、鄭有炓院士、夏建白中院士等10余位專家組成

    福建物構所稀土摻雜半導體納米發光材料研究取得新進展

    稀土摻雜TiO2納米晶敏化發光和上轉換發光示意圖   稀土離子和半導體納米晶(或量子點)本身都是很好的發光材料,二者的有效結合能否生出新型高效發光或激光器件一直是國內外學者關注的科學問題。與絕緣體納米晶相比,半導體納米晶的激子玻爾半徑要大得多,因此量子限域效應對摻雜半導體納米晶發光

    納米所在高純度半導體型碳納米管分離應用方面獲進展

      半導體型單壁碳納米管(s-SWNTs)具有獨特的電學、力學和光學特性,被認為是最有希望取代硅延續摩爾定律的半導體材料之一。但是,目前通過常規制備手段所制備的SWNTs均是不同導電屬性的SWNTs混合物,極大地阻礙了其優異電子性能的發揮及在諸多高端科技領域里的潛在應用。因此,如何有效地獲得高純度、

    物理所基于石墨烯/氧化物納米結構的多態存儲研究獲進展

      隨著計算機技術、互聯網以及新型大眾電子產品的高速發展,現有的存儲技術已經不能完全滿足人們對電子信息存儲產品的要求,因此,迫切需要在存儲技術方面取得突破,開發新一代的存儲技術。電阻式隨機存儲器(RRAM)是基于電致電阻效應的一種新型存儲器,因其結構簡單、讀寫速度快、功耗低、可實

    蘭州化物所半導體陣列光生載流子定向遷移研究獲系列進展

      在中國科學院“百人計劃”項目和國家自然科學基金支持下,中國科學院蘭州化學物理研究所研究員畢迎普帶領的能源與環境納米催化材料組在半導體納米陣列晶面間光生載流子定向遷移及選擇性沉積納米金屬研究領域取得系列進展。  利用貴金屬修飾半導體納米陣列可有效提高其可見光吸收,增強光生電子-空穴分離效率,從而增

    物理所輕元素納米材料研究取得系列進展

      碳納米管自上世紀90年代初發現以來,已經引起了研究者極大興趣。碳納米管具有金屬性或者半導體性取決于它的手性指數,但是手性指數即電子能帶結構不可控一直是一個難題。由于半導體性與金屬性納米管混存且難以分離,造成了碳納米管納電子學應用的瓶頸。三元B-C-N納米管可被看作是碳納米管晶格中的

    “人造石墨烯”有望打開激光器應用大門

      荷蘭盧森堡烏得勒支大學、德國馬普學會的研究人員對傳統半導體材料的納米晶體進行了“人造石墨”的理論研究,他們認為人造石墨有潛力應用于激光器、LEDs、光伏以及電子設備。   研究人員研究了晶格周期小于10nm的結構,發現其具有傳統半導體的結構特性,研究的半導體包括巖鹽鉛硫族化合物和閃鋅礦鎘硫化合

    電工所研制出首例突破11%的鐵電-半導體耦合光伏器件

      日前,中國科學院電工研究所化合物薄膜太陽能電池研究組在普通鈉鈣玻璃上制備的鐵電-半導體耦合光伏器件,經中國科學院太陽光伏發電系統和風力發電系統質量檢測中心認證,其轉化效率達到11.3%。   鐵電-半導體耦合光伏器件也稱為納米偶極子太陽能電池,屬于第三代太陽能電池。與傳統PN結不同的是,這種光伏

    誰將改變我們的生活?盤點十項具有變革潛質的前沿技術

      你開著混動汽車,通過導航儀找到了特色參觀,你在堅固溫暖的房子里用手機查看著一周的天氣預報,你足不出戶就能通過電商買到國外的牛奶,你坐在影院里一邊吃著爆米花一邊看著最新的3D大片……  雖已習以為常,但我們的生活已確實都被這些曾經的先進技術改變了。在2015年的關口猜想,下一次是誰要改變我們?  

    新型金屬硫化物二維半導體材料性質探明

      近日,中國科學院半導體研究所超晶格國家重點實驗室博士后楊圣雪、博士生李燕,在研究員李京波、中科院院士李樹深和夏建白等人的指導下,取得二維GaS超薄半導體的基礎研究中新進展,探明了新型超薄金屬硫化物二維半導體材料性質。2月7日,相關成果發表在英國皇家化學會主辦的《納米尺度》上,并被選為熱點論文。

    中美科學家首次制備出半導體型平行單壁碳納米管

      美國杜克大學和中國北京大學科研人員日前成功制備出半導體型平行單壁碳納米管,從而首次實現了對碳納米管平行性和導電性的同時控制。美國最新一期《納米快報》(Nano Letters)雜志刊登了有關這一成果的論文。   碳納米管韌性高、導電性強、場發射性能優良,應用前景廣闊,有“超級纖維”之稱。根據導

    記“分子材料與器件的制備和性能研究”創新群體

      分子材料和器件主要探討共軛有機、高分子的設計與合成,研究其聚集態結構、分子之間相互作用,光電磁物理性質及相關現象、制備器件并研究其性能,既具有重要的科學意義又有廣闊的應用前景。  在人們的傳統印象中,有機化合物包括高分子聚合物是不導電的。但是,研究發現共軛有機、高分子在固態下具有導電性

    聚焦離子束系統知多少?

    納米科技是當今國際上的一個熱點。納米測量學在納米科技中起著信息采集和分析的不可替代的重要作用,納米加工是納米尺度制造業的核心,發展納米測量學和納米加工的一個重要方法就是電子束,離子束技術。近年來發展起來的聚焦離子束納米加工系統用高強度聚焦離子束對材料進行納米加工,結合掃描電子顯微鏡實時觀察,開辟了從

    石墨烯納米晶體管研制取得進展

       據瑞士聯邦材料研究所(EMPA)消息,該所與德國馬普學會高分子研究所、美國加州大學伯克利分校合作開展的納米晶體管研制取得重要進展,使用石墨烯納米帶制成的核心結構大幅度提升了納米晶體管的性能和成品率,為納米半導體器件進入實用階段創造了條件。   石墨烯材料制成的石墨烯納米帶可展示優良的半導體性能

    中科院電工所制備鐵電-半導體耦合光伏器件

      記者日前從中科院電工所獲悉,該所化合物薄膜太陽能電池研究組在普通鈉鈣玻璃上制備的鐵電-半導體耦合光伏器件,經中科院太陽光伏發電系統和風力發電系統質量檢測中心認證,其轉化效率達11.3%。  鐵電-半導體耦合光伏器件,又叫納米偶極子太陽能電池,屬第三代太陽能電池。與傳統PN結不同的是,該光伏器件是

    <li id="omoqo"></li>
  • <noscript id="omoqo"><kbd id="omoqo"></kbd></noscript>
  • <td id="omoqo"></td>
  • <option id="omoqo"><noscript id="omoqo"></noscript></option>
  • <noscript id="omoqo"><source id="omoqo"></source></noscript>
  • 1v3多肉多车高校生活的玩视频